{"title":"Homogeneous \"Hard-Soft\" Biphasic Bone Adhesives Promote Comminuted Fracture Healing through Interfacial Adaptation and Mechanical Property Maintenance.","authors":"Chuanwei Zhou, Chenyu Liu, Dongyong Sha, Lili Sun, Changsheng Liu, Yuan Yuan","doi":"10.1002/adma.202502598","DOIUrl":null,"url":null,"abstract":"<p><p>Bone adhesives provide remarkable clinical solutions in treating highly comminuted fractures that are difficult to perform surgery with metal fixation. However, no commercial bone adhesives exhibit high adhesion, strength, and osteogenic activity for instant and sustainable fixation in dynamic, wet humoral environments at weight-bearing sites. Here, phase engineering is employed to construct a homogeneous hard-soft biphasic bone adhesive (HB-PTN) with a sea urchin-inspired structure of phosphorylated polyglutamic acid (P-PGA) encapsulating tetracalcium phosphate (TTCP) (hard phase) and a viscoelastic hydrogel composed of amino-functionalized PEGylated poly (glycerol sebacate) (PEGS-NH<sub>2</sub>) and P-PGA (soft phases) for immediate, stable fixation. The adhesion and strength of the HB-PTN hydrogel can be tuned by modulating the soft phase/hard phase ratio. The PTN-2 hydrogel exhibited an adhesive strength of ≈280 kPa, a compressive modulus of ≈1.02 MPa, and high fatigue resistance (92%). Moreover, the PTN-2 hydrogel showed limited swelling (130%) and maintained mechanical properties (102%) after immersion in simulated human body fluid. Furthermore, this strategy avoids the agglomeration of inorganic particles and the formation of cracks due to stress concentration observed with traditional mixing methods. In vivo, the PTN adhesives reveal durable and stable adhesion and accelerate fracture healing, demonstrating great clinical potential in comminuted fracture repair.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2502598"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502598","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bone adhesives provide remarkable clinical solutions in treating highly comminuted fractures that are difficult to perform surgery with metal fixation. However, no commercial bone adhesives exhibit high adhesion, strength, and osteogenic activity for instant and sustainable fixation in dynamic, wet humoral environments at weight-bearing sites. Here, phase engineering is employed to construct a homogeneous hard-soft biphasic bone adhesive (HB-PTN) with a sea urchin-inspired structure of phosphorylated polyglutamic acid (P-PGA) encapsulating tetracalcium phosphate (TTCP) (hard phase) and a viscoelastic hydrogel composed of amino-functionalized PEGylated poly (glycerol sebacate) (PEGS-NH2) and P-PGA (soft phases) for immediate, stable fixation. The adhesion and strength of the HB-PTN hydrogel can be tuned by modulating the soft phase/hard phase ratio. The PTN-2 hydrogel exhibited an adhesive strength of ≈280 kPa, a compressive modulus of ≈1.02 MPa, and high fatigue resistance (92%). Moreover, the PTN-2 hydrogel showed limited swelling (130%) and maintained mechanical properties (102%) after immersion in simulated human body fluid. Furthermore, this strategy avoids the agglomeration of inorganic particles and the formation of cracks due to stress concentration observed with traditional mixing methods. In vivo, the PTN adhesives reveal durable and stable adhesion and accelerate fracture healing, demonstrating great clinical potential in comminuted fracture repair.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.