Imaging Photocarrier Dynamics in Schottky Junction Interface by Scanning Ultrafast Electron Microscopy.

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2025-07-30 Epub Date: 2025-06-12 DOI:10.1021/acs.nanolett.5c02252
Xiang Chen, Yaqing Zhang, Yaocheng Yu, Yue Huang, Jiangteng Guo, Wei Ai, Moxi Qiu, Yunyao Jia, Wei Tang, Fang Liu, Min Feng, Cuntao Gao, Shibin Deng, Jinxiong Wu, Xuewen Fu
{"title":"Imaging Photocarrier Dynamics in Schottky Junction Interface by Scanning Ultrafast Electron Microscopy.","authors":"Xiang Chen, Yaqing Zhang, Yaocheng Yu, Yue Huang, Jiangteng Guo, Wei Ai, Moxi Qiu, Yunyao Jia, Wei Tang, Fang Liu, Min Feng, Cuntao Gao, Shibin Deng, Jinxiong Wu, Xuewen Fu","doi":"10.1021/acs.nanolett.5c02252","DOIUrl":null,"url":null,"abstract":"<p><p>Carrier dynamics at Schottky junction interfaces are crucial for optimizing photoconversion efficiency in photovoltaic, optoelectronic, and photoelectrochemical devices. However, accurately detecting the embedded interfaces remains challenging, particularly with regard to the dynamics of carriers within the two-dimensional (2D) interfacial plane. Here, we use scanning ultrafast electron microscopy (SUEM) to directly image spatiotemporal photocarrier dynamics at the n-type gallium arsenide (n-GaAs)/aluminum (Al) Schottky interface with a nanoscale thickness. The recorded SUEM movies demonstrate that the electrons and holes are separated by the built-in electric field with holes subsequently trapped by interface states. These trapped holes exhibit a quasi-2D subdiffusion behavior along the junction interface via hopping through the interface states. Numerical simulations based on a developed subdiffusion dynamical model well repeat the observations. Our findings provide new insights into the carrier transport dynamics in Schottky junctions and unravel the pivotal role of the interface states.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"11586-11593"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02252","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carrier dynamics at Schottky junction interfaces are crucial for optimizing photoconversion efficiency in photovoltaic, optoelectronic, and photoelectrochemical devices. However, accurately detecting the embedded interfaces remains challenging, particularly with regard to the dynamics of carriers within the two-dimensional (2D) interfacial plane. Here, we use scanning ultrafast electron microscopy (SUEM) to directly image spatiotemporal photocarrier dynamics at the n-type gallium arsenide (n-GaAs)/aluminum (Al) Schottky interface with a nanoscale thickness. The recorded SUEM movies demonstrate that the electrons and holes are separated by the built-in electric field with holes subsequently trapped by interface states. These trapped holes exhibit a quasi-2D subdiffusion behavior along the junction interface via hopping through the interface states. Numerical simulations based on a developed subdiffusion dynamical model well repeat the observations. Our findings provide new insights into the carrier transport dynamics in Schottky junctions and unravel the pivotal role of the interface states.

Abstract Image

扫描超快电子显微镜成像肖特基结界面光载流子动力学。
肖特基结界面的载流子动力学对于优化光伏、光电和光电化学器件的光转换效率至关重要。然而,准确检测嵌入式界面仍然具有挑战性,特别是关于二维(2D)界面平面内载流子的动力学。在这里,我们使用扫描超快电子显微镜(SUEM)直接成像具有纳米级厚度的n型砷化镓(n-GaAs)/铝(Al)肖特基界面的时空光载流子动力学。记录的SUEM影片表明,电子和空穴被内置电场分离,空穴随后被界面态捕获。这些被捕获的空穴通过在界面状态上的跳跃,在结界面上表现出准二维的亚扩散行为。基于发展的亚扩散动力学模型的数值模拟很好地重复了观测结果。我们的发现为肖特基结中的载流子输运动力学提供了新的见解,并揭示了界面态的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信