Timescales of Surface Faulting Preservation in Low-Strain Intraplate Regions From Landscape Evolution Modeling and the Geomorphic and Historical Record
{"title":"Timescales of Surface Faulting Preservation in Low-Strain Intraplate Regions From Landscape Evolution Modeling and the Geomorphic and Historical Record","authors":"Jessica A. Thompson Jobe, Nadine G. Reitman","doi":"10.1029/2024JB029966","DOIUrl":null,"url":null,"abstract":"<p>Large surface-rupturing intraplate earthquakes in stable continental regions (SCRs) are uncommon globally and have recurrence intervals of thousands to hundreds of thousands of years based on the paleoseismic and geomorphic record, challenging accurate active fault identification in these regions. To constrain the timescales of preservation for scarps created by surface ruptures from dip-slip earthquakes, we use a two-dimensional scarp diffusion model for typical intraplate settings and explore which parameters influence fault scarp preservation. These parameters include the coseismic vertical surface offset, the recurrence interval of similar magnitude earthquakes, diffusivity (as a proxy for mean annual precipitation rate), and the erodibility of the surficial material. We constrain parameter ranges from a compilation of historical surface ruptures in intraplate settings in a variety of climates, including the Central and Eastern United States, Australia, Europe, Central Asia (Mongolia, China), India, and West Africa. The timescales of scarp preservation from landscape evolution modeling agree well with observations of scarp preservation in low-strain SCR and intraplate tectonic settings, with some notable exceptions for Australian scarps. We find that the erodibility of the surficial material and earthquake recurrence interval have a stronger effect on the timescales of scarp preservation than diffusivity or coseismic vertical surface offset. Our model results may aid in identifying and characterizing subtle, slow-moving active faults in low-strain SCR and intraplate tectonic settings for different tectonic, geomorphic, and climatic characteristics. Accurate fault locations and characterization from the landscape record has implications for both probabilistic seismic and fault displacement hazard analyses.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029966","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Large surface-rupturing intraplate earthquakes in stable continental regions (SCRs) are uncommon globally and have recurrence intervals of thousands to hundreds of thousands of years based on the paleoseismic and geomorphic record, challenging accurate active fault identification in these regions. To constrain the timescales of preservation for scarps created by surface ruptures from dip-slip earthquakes, we use a two-dimensional scarp diffusion model for typical intraplate settings and explore which parameters influence fault scarp preservation. These parameters include the coseismic vertical surface offset, the recurrence interval of similar magnitude earthquakes, diffusivity (as a proxy for mean annual precipitation rate), and the erodibility of the surficial material. We constrain parameter ranges from a compilation of historical surface ruptures in intraplate settings in a variety of climates, including the Central and Eastern United States, Australia, Europe, Central Asia (Mongolia, China), India, and West Africa. The timescales of scarp preservation from landscape evolution modeling agree well with observations of scarp preservation in low-strain SCR and intraplate tectonic settings, with some notable exceptions for Australian scarps. We find that the erodibility of the surficial material and earthquake recurrence interval have a stronger effect on the timescales of scarp preservation than diffusivity or coseismic vertical surface offset. Our model results may aid in identifying and characterizing subtle, slow-moving active faults in low-strain SCR and intraplate tectonic settings for different tectonic, geomorphic, and climatic characteristics. Accurate fault locations and characterization from the landscape record has implications for both probabilistic seismic and fault displacement hazard analyses.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.