Optimizing index tracking: A Random Matrix Theory approach to portfolio selection

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Francesca Grassetti
{"title":"Optimizing index tracking: A Random Matrix Theory approach to portfolio selection","authors":"Francesca Grassetti","doi":"10.1016/j.physa.2025.130747","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel methodology for index tracking that combines Random Matrix Theory with network-based eigenvalue centrality to construct compact and representative portfolios. The approach filters out noise and systemic effects from the asset correlation structure, enabling the identification of stock communities and the selection of their most influential members. A tunable parameter <span><math><mi>λ</mi></math></span> balances the trade-off between minimizing tracking error and maximizing excess return. Extensive empirical validation across diverse market conditions—classified using a volatility-based regime framework—confirms the robustness and adaptability of the method. This framework offers a scalable and computationally efficient solution for index tracking, suitable for both institutional investors and practical portfolio management.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"674 ","pages":"Article 130747"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125003991","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel methodology for index tracking that combines Random Matrix Theory with network-based eigenvalue centrality to construct compact and representative portfolios. The approach filters out noise and systemic effects from the asset correlation structure, enabling the identification of stock communities and the selection of their most influential members. A tunable parameter λ balances the trade-off between minimizing tracking error and maximizing excess return. Extensive empirical validation across diverse market conditions—classified using a volatility-based regime framework—confirms the robustness and adaptability of the method. This framework offers a scalable and computationally efficient solution for index tracking, suitable for both institutional investors and practical portfolio management.
优化指数跟踪:投资组合选择的随机矩阵理论方法
本文提出了一种新的指数跟踪方法,该方法将随机矩阵理论与基于网络的特征值中心性相结合,构造紧凑且具有代表性的投资组合。该方法滤除了资产相关结构中的噪声和系统性影响,从而能够识别股票群落并选择其最具影响力的成员。可调参数λ平衡了最小化跟踪误差和最大化超额回报之间的权衡。在不同的市场条件下进行了广泛的经验验证——使用基于波动率的制度框架进行分类——证实了该方法的稳健性和适应性。该框架为指数跟踪提供了可扩展和计算效率高的解决方案,适用于机构投资者和实际投资组合管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信