{"title":"Comfort-enhanced longitudinal control for DDEVs: A robust brake coordination approach leveraging reactive anti-dive forces","authors":"Yanjun Ren , Tong Shen , Mingzhuo Zhao , Fanxun Wang , Liwei Xu , Guodong Yin","doi":"10.1016/j.mechatronics.2025.103357","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed drive electric vehicles actuated by in-wheel motors and brake-by-wire systems enable tracking target motion while improving extra vehicle performance. Outboard brake torque allocated on front and rear wheels generates diverse vertically reactive anti-dive forces, providing an innovative approach to mitigate brake dive without requiring active suspensions. However, the differing dynamics of regenerative and hydraulic braking, along with multiple uncertain vehicle parameters, pose significant challenges to achieving robustness under mixed uncertainties. Moreover, pitch-induced bias in onboard acceleration measurements further degrades control accuracy. To address above problems, this paper proposes a robust, comfort-enhanced longitudinal control system with coordinated braking. A three-degree-of-freedom vehicle dynamics model is developed to incorporate the effect of anti-dive forces. For accurate feedback, a robust <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span> observer is designed to compensate pitch-variation-related acceleration measurement biases. By integrating dynamic and parametric uncertainties into the control-oriented model, the mixed <span><math><mi>μ</mi></math></span>-synthesis is employed to design a two-degree-of-freedom controller to robustly optimize the acceleration tracking and anti-dive performance. Compared to the controller designed by standard <span><math><mi>μ</mi></math></span>-synthesis, the proposed approach achieves a 10% improvement in robust performance. Real-vehicle experiments validate the system’s effectiveness, demonstrating over a 27% reduction in pitch angle while maintaining satisfactory acceleration responses under blended braking conditions.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103357"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000662","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed drive electric vehicles actuated by in-wheel motors and brake-by-wire systems enable tracking target motion while improving extra vehicle performance. Outboard brake torque allocated on front and rear wheels generates diverse vertically reactive anti-dive forces, providing an innovative approach to mitigate brake dive without requiring active suspensions. However, the differing dynamics of regenerative and hydraulic braking, along with multiple uncertain vehicle parameters, pose significant challenges to achieving robustness under mixed uncertainties. Moreover, pitch-induced bias in onboard acceleration measurements further degrades control accuracy. To address above problems, this paper proposes a robust, comfort-enhanced longitudinal control system with coordinated braking. A three-degree-of-freedom vehicle dynamics model is developed to incorporate the effect of anti-dive forces. For accurate feedback, a robust observer is designed to compensate pitch-variation-related acceleration measurement biases. By integrating dynamic and parametric uncertainties into the control-oriented model, the mixed -synthesis is employed to design a two-degree-of-freedom controller to robustly optimize the acceleration tracking and anti-dive performance. Compared to the controller designed by standard -synthesis, the proposed approach achieves a 10% improvement in robust performance. Real-vehicle experiments validate the system’s effectiveness, demonstrating over a 27% reduction in pitch angle while maintaining satisfactory acceleration responses under blended braking conditions.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.