{"title":"Gold and titanium dioxide enhanced PCF SPR biosensor for early breast cancer detection in near infrared spectrum","authors":"Md. Faruk Jamil, Md. Bashir Uddin, Md. Jubaer Rahman Tayef","doi":"10.1016/j.sbsr.2025.100821","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer is a major public health concern, with early detection significantly increasing the survival rate. This study focuses on the development of a photonic crystal fiber (PCF) based surface plasmon resonance (SPR) biosensor for detecting breast cancer cells, specifically MDA-MB-231 and MCF-7 cell lines. The proposed circular shaped biosensor is coated with gold (Au) and titanium dioxide (TiO<sub>2</sub>), where an Au layer is inserted over the fused SiO<sub>2</sub>. TiO<sub>2</sub> is used as an adhesion layer which is covered by an analyte layer. There is a perfectly matched layer (PML) for absorbing scattered light from the internal structure. Using COMSOL Multiphysics, the biosensor's geometrical design was optimized, and finite element method (FEM) simulations were performed to evaluate its performance. The proposed biosensor operates within the refractive index (RI) range of 1.385 to 1.401, targeting breast cancer cell detection. Key performance metrics such as wavelength sensitivity (WS), amplitude sensitivity (AS), sensor resolution (SR), and figure of merit (FOM) were assessed. The proposed biosensor demonstrated the highest WS for MCF-7 of 29,285.17 nm/RIU in x polarization and 25,000 nm/RIU in y polarization. Similarly, the highest AS of 2136 <span><math><msup><mi>RIU</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> in x polarization and 2975 <span><math><msup><mi>RIU</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> in y polarization was achieved for MCF-7. The proposed biosensor showed exceptional FOM of 127.89 <span><math><msup><mi>RIU</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for MCF-7 in x polarization and 73.26 <span><math><msup><mi>RIU</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for MDA-MB-231 in y polarization. The proposed biosensor outperformed the existing literature. This biosensor offers significant potential for early stage breast cancer detection, contributing to more accurate and timely diagnoses, ultimately aiding in better treatment outcomes and patient survival.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"49 ","pages":"Article 100821"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221418042500087X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a major public health concern, with early detection significantly increasing the survival rate. This study focuses on the development of a photonic crystal fiber (PCF) based surface plasmon resonance (SPR) biosensor for detecting breast cancer cells, specifically MDA-MB-231 and MCF-7 cell lines. The proposed circular shaped biosensor is coated with gold (Au) and titanium dioxide (TiO2), where an Au layer is inserted over the fused SiO2. TiO2 is used as an adhesion layer which is covered by an analyte layer. There is a perfectly matched layer (PML) for absorbing scattered light from the internal structure. Using COMSOL Multiphysics, the biosensor's geometrical design was optimized, and finite element method (FEM) simulations were performed to evaluate its performance. The proposed biosensor operates within the refractive index (RI) range of 1.385 to 1.401, targeting breast cancer cell detection. Key performance metrics such as wavelength sensitivity (WS), amplitude sensitivity (AS), sensor resolution (SR), and figure of merit (FOM) were assessed. The proposed biosensor demonstrated the highest WS for MCF-7 of 29,285.17 nm/RIU in x polarization and 25,000 nm/RIU in y polarization. Similarly, the highest AS of 2136 in x polarization and 2975 in y polarization was achieved for MCF-7. The proposed biosensor showed exceptional FOM of 127.89 for MCF-7 in x polarization and 73.26 for MDA-MB-231 in y polarization. The proposed biosensor outperformed the existing literature. This biosensor offers significant potential for early stage breast cancer detection, contributing to more accurate and timely diagnoses, ultimately aiding in better treatment outcomes and patient survival.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.