{"title":"MRM-PSO: An enhanced particle swarm optimization technique for resource management in highly dynamic edge computing environments","authors":"Sajjad Molaei , Masoud Sabaei , Javid Taheri","doi":"10.1016/j.adhoc.2025.103952","DOIUrl":null,"url":null,"abstract":"<div><div>The resource constraints of Internet of Things (IoT) devices pose significant hurdles to delay-sensitive applications that operate in dynamic and wireless settings. Since offloading tasks to cloud servers can be hindered by security concerns and latency issues, edge and fog computing bring computation closer to data sources. Given their inherently distributed and resource-constrained nature, edge/fog-enabled platforms require more advanced resource-management solutions to address the numerous constraints encountered in dynamic and wireless environments. This study introduces an innovative resource management algorithm designed for dynamic edge/fog computing environments, tailored to real-world applications, with the objective of enhancing delay performance through optimal container placement. The resource management problem incorporates mobility patterns in wireless settings to reduce migration delay and the processing history of edge/fog nodes to provide a novel method for computing processing delay, resulting in a combined optimization problem expressed in an integer linear programming (ILP) format. To address the formulated NP-Hard problem, we developed a low-complexity Metaheuristic Resource Management algorithm based on Particle Swarm Optimization (MRM-PSO) with effective particle modelling. Our experimental findings demonstrate that greedy heuristics and genetic algorithm (GA) are inadequate for efficiently resolving a given problem, whereas our proposed MRM-PSO algorithm efficiently locates near-optimal solutions within reasonable execution times when compared to exact solvers. MRM-PSO reduces execution time by up to 663.82 % in the worst case and 2307.5 % in the best case. Furthermore, it attains a delay that is just 0.98 % higher in the best case and 5.54 % higher in the worst case compared to the optimal solution.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"178 ","pages":"Article 103952"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525002008","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The resource constraints of Internet of Things (IoT) devices pose significant hurdles to delay-sensitive applications that operate in dynamic and wireless settings. Since offloading tasks to cloud servers can be hindered by security concerns and latency issues, edge and fog computing bring computation closer to data sources. Given their inherently distributed and resource-constrained nature, edge/fog-enabled platforms require more advanced resource-management solutions to address the numerous constraints encountered in dynamic and wireless environments. This study introduces an innovative resource management algorithm designed for dynamic edge/fog computing environments, tailored to real-world applications, with the objective of enhancing delay performance through optimal container placement. The resource management problem incorporates mobility patterns in wireless settings to reduce migration delay and the processing history of edge/fog nodes to provide a novel method for computing processing delay, resulting in a combined optimization problem expressed in an integer linear programming (ILP) format. To address the formulated NP-Hard problem, we developed a low-complexity Metaheuristic Resource Management algorithm based on Particle Swarm Optimization (MRM-PSO) with effective particle modelling. Our experimental findings demonstrate that greedy heuristics and genetic algorithm (GA) are inadequate for efficiently resolving a given problem, whereas our proposed MRM-PSO algorithm efficiently locates near-optimal solutions within reasonable execution times when compared to exact solvers. MRM-PSO reduces execution time by up to 663.82 % in the worst case and 2307.5 % in the best case. Furthermore, it attains a delay that is just 0.98 % higher in the best case and 5.54 % higher in the worst case compared to the optimal solution.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.