Wind farm parameter optimization identification method based on multi-agent SAC

IF 4.7 3区 工程技术 Q2 ENERGY & FUELS
Qiu Quan Deng, Cui Yun Luo, Yin Wu, Guang Ming Li, Xie Jin Ling, Zhen Cheng Liang
{"title":"Wind farm parameter optimization identification method based on multi-agent SAC","authors":"Qiu Quan Deng,&nbsp;Cui Yun Luo,&nbsp;Yin Wu,&nbsp;Guang Ming Li,&nbsp;Xie Jin Ling,&nbsp;Zhen Cheng Liang","doi":"10.1016/j.egyr.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>As more wind farms are integrated into power grid, the safe and stable operation of power system becomes increasingly challenged, making accurate wind farm modeling particularly important. Based on multi-agent soft actor critic (SAC) deep reinforcement learning (DRL), this method identifies wind farm parameters under multiple fault conditions. The method compares reactive power output curves between the detailed model and multi-agent SAC identified model, ultimately obtaining high-accuracy parameters. Finally, the effectiveness and superiority of the proposed method are verified by comparing with the identification results of Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO).</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"14 ","pages":"Pages 205-215"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484725003695","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As more wind farms are integrated into power grid, the safe and stable operation of power system becomes increasingly challenged, making accurate wind farm modeling particularly important. Based on multi-agent soft actor critic (SAC) deep reinforcement learning (DRL), this method identifies wind farm parameters under multiple fault conditions. The method compares reactive power output curves between the detailed model and multi-agent SAC identified model, ultimately obtaining high-accuracy parameters. Finally, the effectiveness and superiority of the proposed method are verified by comparing with the identification results of Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO).
基于多智能体SAC的风电场参数优化识别方法
随着越来越多的风电场并入电网,电力系统的安全稳定运行受到越来越大的挑战,准确的风电场建模就显得尤为重要。该方法基于多智能体软行为评价(SAC)深度强化学习(DRL),对多故障条件下的风电场参数进行识别。该方法将详细模型与多智能体SAC辨识模型的无功输出曲线进行对比,最终获得高精度的参数。最后,通过与Soft Actor-Critic (SAC)和Proximal Policy Optimization (PPO)的识别结果对比,验证了所提方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信