Joon Ki Hong , Jeongho Baek , Jae Young Kim , Song Lim Kim , Jae Il Lyu , Sang-Ho Kang , Jiseon Song , Nyunhee Kim , Eunsook An , Hyun-Sook Lee , Kyung-Hwan Kim , Yong Suk Chung , Sheikh Mansoor
{"title":"High throughput phenotyping using automated imaging system reveals the relationship between seed yield and agronomic traits in Korean rice cultivars","authors":"Joon Ki Hong , Jeongho Baek , Jae Young Kim , Song Lim Kim , Jae Il Lyu , Sang-Ho Kang , Jiseon Song , Nyunhee Kim , Eunsook An , Hyun-Sook Lee , Kyung-Hwan Kim , Yong Suk Chung , Sheikh Mansoor","doi":"10.1016/j.jplph.2025.154544","DOIUrl":null,"url":null,"abstract":"<div><div>This study utilized plant phenomics image analysis technology to explore the agronomic characteristics of rice cultivars, aiming to enhance growth stability, yield potential, and digital data for rice breeding. RGB images were captured at three lateral angles during the growth period of the plants using ScanLyzer, LemnaTec. A total of 42 agronomic traits were analyzed across 102 rice cultivars, categorized into three maturing groups. In addition, to evaluate the measurement accuracy, 9 phenotypic traits, the panicle length (Pl), panicle count (Pc), and number of seeds were also measured destructively after harvest. Parameter estimated revealed that the Pl trait exerted the strongest positive effect on seed production across all groups analyzed, with coefficients (β) of 0.459 for the entire population, 0.456 in the early-maturing group, 0.537 in the medium-maturing group, and 0.574 in the medium-late maturing group <em>(p < 0.05).</em> Other traits, such as maximum area (Am), and maximum height (Hm), also positively influenced seed production but to a lesser extent. Notably, duration of maximum value of rice plant width had a significant negative effect in the early-maturing group <em>(β = -0.369, p < 0.05).</em> Correlation analyses revealed strong positive relationships between seed production and various traits across maturity classes, notably with days to maximum height, Pl, Pc, and seed count. Additionally, panicle length and count emerged as pivotal factors influencing seed numbers. These findings underscore the varying impacts of agronomic traits on seed yield depending on cultivars and maturity groups, offering valuable insights for the selection of rice cultivars aimed at optimizing seed production.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"311 ","pages":"Article 154544"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725001269","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilized plant phenomics image analysis technology to explore the agronomic characteristics of rice cultivars, aiming to enhance growth stability, yield potential, and digital data for rice breeding. RGB images were captured at three lateral angles during the growth period of the plants using ScanLyzer, LemnaTec. A total of 42 agronomic traits were analyzed across 102 rice cultivars, categorized into three maturing groups. In addition, to evaluate the measurement accuracy, 9 phenotypic traits, the panicle length (Pl), panicle count (Pc), and number of seeds were also measured destructively after harvest. Parameter estimated revealed that the Pl trait exerted the strongest positive effect on seed production across all groups analyzed, with coefficients (β) of 0.459 for the entire population, 0.456 in the early-maturing group, 0.537 in the medium-maturing group, and 0.574 in the medium-late maturing group (p < 0.05). Other traits, such as maximum area (Am), and maximum height (Hm), also positively influenced seed production but to a lesser extent. Notably, duration of maximum value of rice plant width had a significant negative effect in the early-maturing group (β = -0.369, p < 0.05). Correlation analyses revealed strong positive relationships between seed production and various traits across maturity classes, notably with days to maximum height, Pl, Pc, and seed count. Additionally, panicle length and count emerged as pivotal factors influencing seed numbers. These findings underscore the varying impacts of agronomic traits on seed yield depending on cultivars and maturity groups, offering valuable insights for the selection of rice cultivars aimed at optimizing seed production.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.