Pathways to sustainable fuel design from a probabilistic deep learning perspective

IF 13.8 Q1 ENERGY & FUELS
Rodolfo S.M. Freitas , Zhihao Xing , Fernando A. Rochinha , Roger F. Cracknell , Daniel Mira , Nader Karimi , Xi Jiang
{"title":"Pathways to sustainable fuel design from a probabilistic deep learning perspective","authors":"Rodolfo S.M. Freitas ,&nbsp;Zhihao Xing ,&nbsp;Fernando A. Rochinha ,&nbsp;Roger F. Cracknell ,&nbsp;Daniel Mira ,&nbsp;Nader Karimi ,&nbsp;Xi Jiang","doi":"10.1016/j.adapen.2025.100226","DOIUrl":null,"url":null,"abstract":"<div><div>To achieve net zero CO<sub>2</sub> emissions by 2050–2060, decarbonising the hard-to-abate sectors such as long-distance, heavy-duty transport is a top priority worldwide. These sectors are particularly challenging to decarbonise due to the use of high-energy-density liquid fossil fuels. In this context, designing low-carbon alternative fuels compatible with existing engines and fuel infrastructures is essential. This work presents an advanced fuel design framework to develop sustainable fuels that meet the high energy density requirements of heavy-duty vehicles. The fuel design approach is built upon a probabilistic perspective by considering a conditional generative model to predict the physicochemical properties of pure compounds and fuel blends with confidence bounds required for decision-making tasks. The probabilistic model is then integrated into an inverse design framework to design fuels with specific requirements. Finally, the fuel design framework is employed to develop new diesel fuel compositions according to the desired targets: ignition quality (cetane number) and sooting tendency (yielding sooting index). The AI-assisted fuel design approach can potentially lead to sustainable liquid fuels that are fully compatible with the existing utilisation equipment and can satisfy the requirements of different application sectors.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"19 ","pages":"Article 100226"},"PeriodicalIF":13.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792425000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve net zero CO2 emissions by 2050–2060, decarbonising the hard-to-abate sectors such as long-distance, heavy-duty transport is a top priority worldwide. These sectors are particularly challenging to decarbonise due to the use of high-energy-density liquid fossil fuels. In this context, designing low-carbon alternative fuels compatible with existing engines and fuel infrastructures is essential. This work presents an advanced fuel design framework to develop sustainable fuels that meet the high energy density requirements of heavy-duty vehicles. The fuel design approach is built upon a probabilistic perspective by considering a conditional generative model to predict the physicochemical properties of pure compounds and fuel blends with confidence bounds required for decision-making tasks. The probabilistic model is then integrated into an inverse design framework to design fuels with specific requirements. Finally, the fuel design framework is employed to develop new diesel fuel compositions according to the desired targets: ignition quality (cetane number) and sooting tendency (yielding sooting index). The AI-assisted fuel design approach can potentially lead to sustainable liquid fuels that are fully compatible with the existing utilisation equipment and can satisfy the requirements of different application sectors.
从概率深度学习的角度看可持续燃料设计的途径
为了在2050-2060年之前实现二氧化碳净零排放,对长途、重型运输等难以减排的行业进行脱碳是全球的首要任务。由于使用高能量密度的液体化石燃料,这些部门在脱碳方面尤其具有挑战性。在这种情况下,设计与现有发动机和燃料基础设施兼容的低碳替代燃料至关重要。这项工作提出了一种先进的燃料设计框架,用于开发满足重型车辆高能量密度要求的可持续燃料。燃料设计方法建立在概率的角度上,通过考虑条件生成模型来预测纯化合物和燃料混合物的物理化学性质,并具有决策任务所需的置信限。然后将概率模型集成到逆设计框架中,以设计具有特定要求的燃料。最后,根据点火质量(十六烷值)和烟尘倾向性(产生烟尘指数)这两个目标,利用燃料设计框架开发新的柴油成分。人工智能辅助燃料设计方法可能会产生与现有利用设备完全兼容的可持续液体燃料,并能满足不同应用领域的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信