Experimental investigation of high temperature organic phase change materials for waste heat recovery

Q1 Chemical Engineering
Giulia Righetti , Dario Guarda , Luca Doretti , Claudio Zilio , Francesca Martelletto , Andrea Dolfi , Giuseppe Travaglini , Simone Mancin
{"title":"Experimental investigation of high temperature organic phase change materials for waste heat recovery","authors":"Giulia Righetti ,&nbsp;Dario Guarda ,&nbsp;Luca Doretti ,&nbsp;Claudio Zilio ,&nbsp;Francesca Martelletto ,&nbsp;Andrea Dolfi ,&nbsp;Giuseppe Travaglini ,&nbsp;Simone Mancin","doi":"10.1016/j.ijft.2025.101293","DOIUrl":null,"url":null,"abstract":"<div><div>This paper compares the performance of two high temperature organic phase change materials during solid/liquid phase change to study the effects of 3D printed periodic structures in enhancing the heat transfer performance.</div><div>The experimental results reveal that erythritol and an organic material, P130 respond differently to the same thermal stimuli, emphasizing the importance of this analysis to highlight the underpinning heat and mass transfer mechanisms. It can be stated that the phase change materials present peculiar heat transfer characteristics and one of the main challenges is represented by the difficulty in identify a general thermal behaviour (latent heat storage capacity, heat transfer characteristics, material’s response to possible enhancement strategies, etc.) even within the same family of materials. This work confirms that the design of the latent thermal energy storage must be tailored around the specific application and that the thermal conductivity of the phase change materials does not deeply affect the need of the use of enhanced surfaces. In fact, only enhanced surfaces can permit to design efficient and effective latent thermal energy storages that meet the heat load demands.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"28 ","pages":"Article 101293"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272500240X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper compares the performance of two high temperature organic phase change materials during solid/liquid phase change to study the effects of 3D printed periodic structures in enhancing the heat transfer performance.
The experimental results reveal that erythritol and an organic material, P130 respond differently to the same thermal stimuli, emphasizing the importance of this analysis to highlight the underpinning heat and mass transfer mechanisms. It can be stated that the phase change materials present peculiar heat transfer characteristics and one of the main challenges is represented by the difficulty in identify a general thermal behaviour (latent heat storage capacity, heat transfer characteristics, material’s response to possible enhancement strategies, etc.) even within the same family of materials. This work confirms that the design of the latent thermal energy storage must be tailored around the specific application and that the thermal conductivity of the phase change materials does not deeply affect the need of the use of enhanced surfaces. In fact, only enhanced surfaces can permit to design efficient and effective latent thermal energy storages that meet the heat load demands.
高温有机相变材料余热回收的实验研究
本文通过对比两种高温有机相变材料在固/液相变过程中的性能,研究3D打印周期结构对提高传热性能的影响。实验结果表明赤藓糖醇和有机材料P130对相同热刺激的反应不同,强调了该分析对揭示基本传热传质机制的重要性。可以说,相变材料呈现出特殊的传热特性,其中一个主要挑战是即使在同一系列材料中也难以确定一般的热行为(潜热储存容量,传热特性,材料对可能增强策略的响应等)。这项工作证实了潜热储能的设计必须围绕特定的应用进行定制,并且相变材料的导热性不会深刻影响增强表面的使用需求。事实上,只有增强的表面可以允许设计高效和有效的潜在热能储存,以满足热负荷的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信