Guopeng Xu , Yiheng Tang , Danfeng Xiong , Wenkun Zhang , Ziyu Liu , Paul K. Chu , Guomin Wang
{"title":"Carbon dots for reactive oxygen species modulation","authors":"Guopeng Xu , Yiheng Tang , Danfeng Xiong , Wenkun Zhang , Ziyu Liu , Paul K. Chu , Guomin Wang","doi":"10.1016/j.mser.2025.101024","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive oxygen species (ROS) manipulation is emerging as a pivotal focus in biomaterials design. Carbon dots (CDs), with their superior biocompatibility, facile synthesis, exceptional electronic properties, and abundant active sites, are gaining significant attention as ROS modulators (CDRMs). However, unclear mechanisms of action and challenges in controlling activity and selectivity hinder the advancement of CDRMs for sophisticated biomedical applications. While existing reviews have summarized the synthesis and biomedical applications of CDs, none have systematically addressed their roles and mechanisms in ROS modulation. Additionally, a universal principle for designing efficient and selective CDRMs is urgently needed to advance their clinical translation. This review explores the origins of activity in CDRMs, elucidates modulation mechanisms, and provides in-depth insights into tailoring CDRMs for ROS upregulation, downregulation, and bidirectional manipulation. Strategies such as nanozyme-catalyzed, physical field-energized, and precursor-inherited ROS management are highlighted, followed by an analysis of methods to optimize CDRM activity and selectivity, addressing critical gaps in current literature. Furthermore, the applications of CDRMs in cancer therapy, wound healing, and inflammation-related diseases are summarized and analyzed. Finally, we discuss existing obstacles, such as low efficacy and selectivity, and propose strategies to enhance the clinical translation of CDRMs, offering a forward-looking perspective to guide future research and innovation in this promising field.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101024"},"PeriodicalIF":31.6000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001019","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS) manipulation is emerging as a pivotal focus in biomaterials design. Carbon dots (CDs), with their superior biocompatibility, facile synthesis, exceptional electronic properties, and abundant active sites, are gaining significant attention as ROS modulators (CDRMs). However, unclear mechanisms of action and challenges in controlling activity and selectivity hinder the advancement of CDRMs for sophisticated biomedical applications. While existing reviews have summarized the synthesis and biomedical applications of CDs, none have systematically addressed their roles and mechanisms in ROS modulation. Additionally, a universal principle for designing efficient and selective CDRMs is urgently needed to advance their clinical translation. This review explores the origins of activity in CDRMs, elucidates modulation mechanisms, and provides in-depth insights into tailoring CDRMs for ROS upregulation, downregulation, and bidirectional manipulation. Strategies such as nanozyme-catalyzed, physical field-energized, and precursor-inherited ROS management are highlighted, followed by an analysis of methods to optimize CDRM activity and selectivity, addressing critical gaps in current literature. Furthermore, the applications of CDRMs in cancer therapy, wound healing, and inflammation-related diseases are summarized and analyzed. Finally, we discuss existing obstacles, such as low efficacy and selectivity, and propose strategies to enhance the clinical translation of CDRMs, offering a forward-looking perspective to guide future research and innovation in this promising field.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.