A novel neural network for isotropic polyconvex hyperelasticity satisfying the universal approximation theorem

IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gian-Luca Geuken , Patrick Kurzeja , David Wiedemann , Jörn Mosler
{"title":"A novel neural network for isotropic polyconvex hyperelasticity satisfying the universal approximation theorem","authors":"Gian-Luca Geuken ,&nbsp;Patrick Kurzeja ,&nbsp;David Wiedemann ,&nbsp;Jörn Mosler","doi":"10.1016/j.jmps.2025.106209","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel framework of neural networks for isotropic hyperelasticity that enforces necessary physical and mathematical constraints while simultaneously satisfying the universal approximation theorem. The two key ingredients are an input convex network architecture and a formulation in the elementary polynomials of the signed singular values of the deformation gradient. In line with previously published networks, it can rigorously capture frame-indifference and polyconvexity — as well as further constraints like balance of angular momentum and growth conditions. However and in contrast to previous networks, a universal approximation theorem for the proposed approach is proven. To be more explicit, the proposed network can approximate any frame-indifferent, isotropic polyconvex energy (provided the network is large enough). This is possible by working with a sufficient and necessary criterion for frame-indifferent, isotropic polyconvex functions. Comparative studies with existing approaches identify the advantages of the proposed method, particularly in approximating non-polyconvex energies as well as computing polyconvex hulls.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"203 ","pages":"Article 106209"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001851","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel framework of neural networks for isotropic hyperelasticity that enforces necessary physical and mathematical constraints while simultaneously satisfying the universal approximation theorem. The two key ingredients are an input convex network architecture and a formulation in the elementary polynomials of the signed singular values of the deformation gradient. In line with previously published networks, it can rigorously capture frame-indifference and polyconvexity — as well as further constraints like balance of angular momentum and growth conditions. However and in contrast to previous networks, a universal approximation theorem for the proposed approach is proven. To be more explicit, the proposed network can approximate any frame-indifferent, isotropic polyconvex energy (provided the network is large enough). This is possible by working with a sufficient and necessary criterion for frame-indifferent, isotropic polyconvex functions. Comparative studies with existing approaches identify the advantages of the proposed method, particularly in approximating non-polyconvex energies as well as computing polyconvex hulls.
满足普适逼近定理的各向同性多凸超弹性神经网络
本文提出了一种新的神经网络框架,该框架在满足普适近似定理的同时,施加了必要的物理和数学约束。两个关键成分是输入凸网络结构和变形梯度的符号奇异值的初等多项式公式。与先前发布的网络一致,它可以严格捕获帧无关性和多凸性,以及角动量平衡和生长条件等进一步的约束。然而,与以前的网络相比,本文证明了该方法的普遍近似定理。更明确地说,所提出的网络可以近似任何帧无关的、各向同性的多凸能量(前提是网络足够大)。这可以通过对框架无关的、各向同性的多凸函数进行充分和必要的判据来实现。通过与现有方法的比较研究,发现了该方法的优点,特别是在逼近非多凸能量和计算多凸包方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信