{"title":"On the nature of the glass transition in metallic glasses after deep relaxation","authors":"A.S. Makarov , G.V. Afonin , R.A. Konchakov , J.C. Qiao , N.P. Kobelev , V.A. Khonik","doi":"10.1016/j.jnoncrysol.2025.123667","DOIUrl":null,"url":null,"abstract":"<div><div>We performed parallel study of calorimetric and high-frequency shear modulus behavior of Zr-based metallic glasses after deep relaxation just below the glass transition. It is shown that deep relaxation results in the appearance of a strong peak of the excess heat capacity while the shear modulus is moderately affected. A theory assuming high-frequency shear modulus to be a major physical parameter controlling glass relaxation is suggested. The energy barrier for these rearrangements is proportional to the shear modulus while its magnitude, in turn, varies due to the changes in the defect concentration (diaelastic effect). Both dependences lead to the occurrence of heat effects. The excess heat capacity calculated using experimental shear modulus data demonstrates a very good agreement with the experimental calorimetric data for all states of glasses. It is argued that the glass transition behavior after deep relaxation bears the features of a phase transition of the first kind.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"666 ","pages":"Article 123667"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309325002820","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We performed parallel study of calorimetric and high-frequency shear modulus behavior of Zr-based metallic glasses after deep relaxation just below the glass transition. It is shown that deep relaxation results in the appearance of a strong peak of the excess heat capacity while the shear modulus is moderately affected. A theory assuming high-frequency shear modulus to be a major physical parameter controlling glass relaxation is suggested. The energy barrier for these rearrangements is proportional to the shear modulus while its magnitude, in turn, varies due to the changes in the defect concentration (diaelastic effect). Both dependences lead to the occurrence of heat effects. The excess heat capacity calculated using experimental shear modulus data demonstrates a very good agreement with the experimental calorimetric data for all states of glasses. It is argued that the glass transition behavior after deep relaxation bears the features of a phase transition of the first kind.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.