Xueting Bi , Qian Lan , Xin Xiao , Yu Deng , Dongsheng Li
{"title":"Leaf vein scaffolds for three-dimensional culture of PDLSCs-derived Muse cells","authors":"Xueting Bi , Qian Lan , Xin Xiao , Yu Deng , Dongsheng Li","doi":"10.1016/j.jbiotec.2025.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontal disease, a significant global health burden, has encountered limited success with current therapeutic strategies to achieve full tissue regeneration. The emergence of Multilineage Differentiation and Stress-Enduring (Muse) cells presents a promising avenue for periodontal tissue regeneration. This study introduced a novel three-dimensional (3D) culture system utilizing Magnolia leaf vein scaffolds, characterized for their biocompatibility and evaluated for their impact on Muse cells' proliferation, adhesion, osteogenic differentiation, and exosome secretion. The isolation of Muse cells from Periodontal Ligament Stem Cells (PDLSCs) was successfully accomplished, with excellent compatibility observed with the plant-derived scaffolds. Notably, the 3D culture substantially upregulated osteogenic markers and promoted the formation of mineralized nodules, signifying enhanced osteogenic potential. Additionally, Muse cells in 3D culture exhibited a significant increase in exosome secretion, which were more effective in stimulating PDLSCs proliferation. The study concluded that plant leaf vein scaffolds provide a sustainable and effective platform for 3D stem cell culture, with the potential to significantly enhance the therapeutic efficacy of Muse cells in periodontal tissue engineering.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"405 ","pages":"Pages 275-282"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625001531","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontal disease, a significant global health burden, has encountered limited success with current therapeutic strategies to achieve full tissue regeneration. The emergence of Multilineage Differentiation and Stress-Enduring (Muse) cells presents a promising avenue for periodontal tissue regeneration. This study introduced a novel three-dimensional (3D) culture system utilizing Magnolia leaf vein scaffolds, characterized for their biocompatibility and evaluated for their impact on Muse cells' proliferation, adhesion, osteogenic differentiation, and exosome secretion. The isolation of Muse cells from Periodontal Ligament Stem Cells (PDLSCs) was successfully accomplished, with excellent compatibility observed with the plant-derived scaffolds. Notably, the 3D culture substantially upregulated osteogenic markers and promoted the formation of mineralized nodules, signifying enhanced osteogenic potential. Additionally, Muse cells in 3D culture exhibited a significant increase in exosome secretion, which were more effective in stimulating PDLSCs proliferation. The study concluded that plant leaf vein scaffolds provide a sustainable and effective platform for 3D stem cell culture, with the potential to significantly enhance the therapeutic efficacy of Muse cells in periodontal tissue engineering.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.