Topology-imprinting in nonlinear metasurfaces

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiannan Gao, Hooman Barati Sedeh, Dmitrii Tsvetkov, Danilo Gomes Pires, Maria Antonietta Vincenti, Yun Xu, Ivan Kravchenko, Renee George, Michael Scalora, Liang Feng, Natalia M. Litchinitser
{"title":"Topology-imprinting in nonlinear metasurfaces","authors":"Jiannan Gao,&nbsp;Hooman Barati Sedeh,&nbsp;Dmitrii Tsvetkov,&nbsp;Danilo Gomes Pires,&nbsp;Maria Antonietta Vincenti,&nbsp;Yun Xu,&nbsp;Ivan Kravchenko,&nbsp;Renee George,&nbsp;Michael Scalora,&nbsp;Liang Feng,&nbsp;Natalia M. Litchinitser","doi":"10.1126/sciadv.adv5190","DOIUrl":null,"url":null,"abstract":"<div >Flat optical components, or metasurfaces, have transformed optical imaging, data storage, information processing, and biomedical applications by providing unprecedented control over light-matter interactions. These nano-engineered structures enable compact, multidimensional manipulation of light’s amplitude, phase, polarization, and wavefront, producing scalar and vector beams with unique properties such as orbital angular momentum and knotted topologies. This flexibility has potential applications in optical communication and imaging, particularly in complex environments such as atmospheric turbulence and undersea scattering. However, designing metasurfaces for shorter wavelengths, such as visible and ultraviolet light, remains challenging due to fabrication limitations and material absorption. Here, we introduce an innovative concept called topology imprinting using judiciously designed all-dielectric nonlinear optical metasurfaces to replicate desired waveforms at fundamental and harmonic frequencies, opening promising avenues for advanced photonic applications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 24","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv5190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv5190","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flat optical components, or metasurfaces, have transformed optical imaging, data storage, information processing, and biomedical applications by providing unprecedented control over light-matter interactions. These nano-engineered structures enable compact, multidimensional manipulation of light’s amplitude, phase, polarization, and wavefront, producing scalar and vector beams with unique properties such as orbital angular momentum and knotted topologies. This flexibility has potential applications in optical communication and imaging, particularly in complex environments such as atmospheric turbulence and undersea scattering. However, designing metasurfaces for shorter wavelengths, such as visible and ultraviolet light, remains challenging due to fabrication limitations and material absorption. Here, we introduce an innovative concept called topology imprinting using judiciously designed all-dielectric nonlinear optical metasurfaces to replicate desired waveforms at fundamental and harmonic frequencies, opening promising avenues for advanced photonic applications.
非线性超表面的拓扑印迹
平面光学元件或超表面通过对光-物质相互作用提供前所未有的控制,已经改变了光学成像、数据存储、信息处理和生物医学应用。这些纳米工程结构可以对光的振幅、相位、偏振和波前进行紧凑、多维的操作,产生具有独特性质的标量和矢量光束,如轨道角动量和结状拓扑结构。这种灵活性在光通信和成像方面有潜在的应用,特别是在复杂的环境中,如大气湍流和海底散射。然而,由于制造限制和材料吸收,设计波长较短的超表面(如可见光和紫外光)仍然具有挑战性。在这里,我们介绍了一种称为拓扑印迹的创新概念,使用明智设计的全介电非线性光学超表面来复制基频和谐波频率下所需的波形,为先进的光子应用开辟了有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信