Triple-Cue-Guided Multichannel Hydrogel Conduit to Synergistically Enhance Peripheral Nerve Repair

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-12 DOI:10.1021/acsnano.5c03215
Yuting Cai, Penghui Wang, Yaxuan Li, Tsz Wing Tang, Linjie Zhang, Hongxin Shu, Hoilun Wong, Yuyin Li, Jingwei Li, Ana Claudia Arias, Chenguang Zhang, Guorui Jin, Qun Huang* and Zhengtang Luo*, 
{"title":"Triple-Cue-Guided Multichannel Hydrogel Conduit to Synergistically Enhance Peripheral Nerve Repair","authors":"Yuting Cai,&nbsp;Penghui Wang,&nbsp;Yaxuan Li,&nbsp;Tsz Wing Tang,&nbsp;Linjie Zhang,&nbsp;Hongxin Shu,&nbsp;Hoilun Wong,&nbsp;Yuyin Li,&nbsp;Jingwei Li,&nbsp;Ana Claudia Arias,&nbsp;Chenguang Zhang,&nbsp;Guorui Jin,&nbsp;Qun Huang* and Zhengtang Luo*,&nbsp;","doi":"10.1021/acsnano.5c03215","DOIUrl":null,"url":null,"abstract":"<p >Multichannel nerve guidance conduits (NGCs) have demonstrated superior efficacy in the regeneration of large nerve defects. Here, we present the incorporation of three synergistic guiding cues into a single multichannel hydrogel conduit: topographical guidance, a conductivity gradient, and a nerve growth factor (NGF) gradient. The aligned hydrogel conduit is fabricated through directional lyophilization of a graphene oxide (GO)/poly(vinyl alcohol) (PVA) solution. The conductivity gradient is achieved via the dopamine-induced reduction of GO, during which amino groups with a concentration gradient are simultaneously generated, facilitating the eventual formation of an NGF gradient. <i>In vitro</i> experiments validate the excellent guidance effect and promotion of neuritogenesis by the NGF-gradient/aligned PVA/reduced graphene oxide (rGO)/polydopamine (PDA)/heparin hydrogel conduit (denoted as NGF-AGHC) on PC12 neuronal cells. Furthermore, <i>in vivo</i> testing reveals that NGF-AGHC exhibits a stronger longitudinal attraction to axons and promotes remyelination. Additionally, functional recovery assessments, histological analyses, and morphological evaluations all indicate that NGF-AGHC significantly enhances peripheral nerve regeneration, with performance comparable to that of the autograft group. Altogether, through a straightforward preparation method integrating topographical guidance, conductivity gradients, and NGF gradients, our NGCs offer a promising approach to peripheral nerve repair.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 24","pages":"22163–22178"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c03215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multichannel nerve guidance conduits (NGCs) have demonstrated superior efficacy in the regeneration of large nerve defects. Here, we present the incorporation of three synergistic guiding cues into a single multichannel hydrogel conduit: topographical guidance, a conductivity gradient, and a nerve growth factor (NGF) gradient. The aligned hydrogel conduit is fabricated through directional lyophilization of a graphene oxide (GO)/poly(vinyl alcohol) (PVA) solution. The conductivity gradient is achieved via the dopamine-induced reduction of GO, during which amino groups with a concentration gradient are simultaneously generated, facilitating the eventual formation of an NGF gradient. In vitro experiments validate the excellent guidance effect and promotion of neuritogenesis by the NGF-gradient/aligned PVA/reduced graphene oxide (rGO)/polydopamine (PDA)/heparin hydrogel conduit (denoted as NGF-AGHC) on PC12 neuronal cells. Furthermore, in vivo testing reveals that NGF-AGHC exhibits a stronger longitudinal attraction to axons and promotes remyelination. Additionally, functional recovery assessments, histological analyses, and morphological evaluations all indicate that NGF-AGHC significantly enhances peripheral nerve regeneration, with performance comparable to that of the autograft group. Altogether, through a straightforward preparation method integrating topographical guidance, conductivity gradients, and NGF gradients, our NGCs offer a promising approach to peripheral nerve repair.

Abstract Image

Abstract Image

三线索引导多通道水凝胶导管协同促进周围神经修复
多通道神经引导导管(NGCs)在大面积神经缺损的修复中表现出优越的疗效。在这里,我们提出将三种协同引导线索结合到单个多通道水凝胶导管中:地形引导、电导率梯度和神经生长因子(NGF)梯度。排列的水凝胶管道是通过氧化石墨烯(GO)/聚乙烯醇(PVA)溶液的定向冻干制成的。电导率梯度是通过多巴胺诱导氧化石墨烯还原来实现的,在此过程中,具有浓度梯度的氨基同时产生,促进了NGF梯度的最终形成。体外实验验证了ngf梯度/排列PVA/还原氧化石墨烯(rGO)/聚多巴胺(PDA)/肝素水凝胶导管(简称NGF-AGHC)对PC12神经元细胞的良好引导和促进作用。此外,体内实验表明,NGF-AGHC对轴突具有更强的纵向吸引力,并促进髓鞘再生。此外,功能恢复评估、组织学分析和形态学评估均表明,NGF-AGHC显著增强周围神经再生,其性能与自体移植物组相当。总之,通过结合地形引导、电导率梯度和NGF梯度的简单制备方法,我们的NGCs为周围神经修复提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信