Elena J. Coley-O’Rourke, Gregory R. Lum, Geoffrey N. Pronovost, Lewis W. Yu, Ezgi Özcan, Kristie B. Yu, Janet McDermott, Anna Chakhoyan, Eliza Goldman, Helen E. Vuong, Jorge Paramo, Sydney McCune, Kristija Sejane, Simone Renwick, Lars Bode, Alison Chu, Kara L. Calkins, Elaine Y. Hsiao
{"title":"Murine maternal microbiome modifies adverse effects of protein undernutrition on offspring neurobehaviour","authors":"Elena J. Coley-O’Rourke, Gregory R. Lum, Geoffrey N. Pronovost, Lewis W. Yu, Ezgi Özcan, Kristie B. Yu, Janet McDermott, Anna Chakhoyan, Eliza Goldman, Helen E. Vuong, Jorge Paramo, Sydney McCune, Kristija Sejane, Simone Renwick, Lars Bode, Alison Chu, Kara L. Calkins, Elaine Y. Hsiao","doi":"10.1038/s41564-025-02022-7","DOIUrl":null,"url":null,"abstract":"<p>Protein undernutrition results in impaired growth and neurobehavioural development in children. However, the impact of timing, environmental factors and maternal versus neonatal influences are unclear. Here, using a mouse model of fetal growth restriction where maternal protein intake is limited during pregnancy, we show that adult offspring exhibit cognitive and anxiety-like behavioural abnormalities. Cross-fostering newborn mice to dams previously exposed to either low protein or standard diet reveals that behavioural impairments in adult offspring require diet-induced conditioning of both fetal development and maternal peripartum physiology. Maternal gut microbiome diversity is reduced, maternal immune, milk, and serum metabolomic profiles are altered, and widespread changes in fetal brain transcriptomic and metabolomic profiles are observed, including subsets of microbiome-dependent metabolites. Finally, we show that dam treatment with a cocktail of ten diet- and microbiome-dependent metabolites results in differential effects on fetal development and postnatal behaviour. Our study highlights the impact of prenatal maternal protein undernutrition on offspring neurobehavioural trajectories and the role of the maternal microbiome.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"42 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-02022-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein undernutrition results in impaired growth and neurobehavioural development in children. However, the impact of timing, environmental factors and maternal versus neonatal influences are unclear. Here, using a mouse model of fetal growth restriction where maternal protein intake is limited during pregnancy, we show that adult offspring exhibit cognitive and anxiety-like behavioural abnormalities. Cross-fostering newborn mice to dams previously exposed to either low protein or standard diet reveals that behavioural impairments in adult offspring require diet-induced conditioning of both fetal development and maternal peripartum physiology. Maternal gut microbiome diversity is reduced, maternal immune, milk, and serum metabolomic profiles are altered, and widespread changes in fetal brain transcriptomic and metabolomic profiles are observed, including subsets of microbiome-dependent metabolites. Finally, we show that dam treatment with a cocktail of ten diet- and microbiome-dependent metabolites results in differential effects on fetal development and postnatal behaviour. Our study highlights the impact of prenatal maternal protein undernutrition on offspring neurobehavioural trajectories and the role of the maternal microbiome.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.