{"title":"High-efficiency leucoplast transit peptides for manipulating plastid protein production","authors":"Chiung-Chih Chu, Chia-Ying Han, Hsou-min Li","doi":"10.1038/s41477-025-02020-x","DOIUrl":null,"url":null,"abstract":"<p>Plastids develop into nutrient-storing leucoplasts in seeds and roots. Efficient protein delivery is essential to modify biosynthetic processes in leucoplasts for human needs, but no effective transit peptide for leucoplasts is currently available. Here, using an in vitro leucoplast import system, we have identified six high-efficiency transit peptides. Compared with a widely used chloroplast transit peptide, these peptides delivered similar amounts of GFP into chloroplasts, but two to seven times more GFP into root and petal leucoplasts, attesting to the advantage of screening using leucoplasts. When used to deliver bacterial phytoene synthase (crtB) into rice calli and glyphosate-resistant EPSP synthase into <i>Arabidopsis</i>, these peptides enhanced carotenoid production and herbicide resistance, respectively. The correlation among levels of GFP delivery, carotenoid production and herbicide resistance indicates that the efficiency of these transit peptides is consistent across plant species and passenger proteins. Transit peptide selection therefore offers an effective way to modulate production levels of engineered proteins.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-02020-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plastids develop into nutrient-storing leucoplasts in seeds and roots. Efficient protein delivery is essential to modify biosynthetic processes in leucoplasts for human needs, but no effective transit peptide for leucoplasts is currently available. Here, using an in vitro leucoplast import system, we have identified six high-efficiency transit peptides. Compared with a widely used chloroplast transit peptide, these peptides delivered similar amounts of GFP into chloroplasts, but two to seven times more GFP into root and petal leucoplasts, attesting to the advantage of screening using leucoplasts. When used to deliver bacterial phytoene synthase (crtB) into rice calli and glyphosate-resistant EPSP synthase into Arabidopsis, these peptides enhanced carotenoid production and herbicide resistance, respectively. The correlation among levels of GFP delivery, carotenoid production and herbicide resistance indicates that the efficiency of these transit peptides is consistent across plant species and passenger proteins. Transit peptide selection therefore offers an effective way to modulate production levels of engineered proteins.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.