Rational points of rigid-analytic sets : a Pila–Wilkie-type theorem

IF 0.9 1区 数学 Q2 MATHEMATICS
Gal Binyamini, Fumiharu Kato
{"title":"Rational points of rigid-analytic sets : a Pila–Wilkie-type theorem","authors":"Gal Binyamini, Fumiharu Kato","doi":"10.2140/ant.2025.19.1581","DOIUrl":null,"url":null,"abstract":"<p>We establish a rigid-analytic analog of the Pila–Wilkie counting theorem, giving subpolynomial upper bounds for the number of rational points in the transcendental part of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></math>-analytic set and the number of rational functions in a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math>-analytic set. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math>-analytic sets, we prove such bounds uniformly for the specialization to every nonarchimedean local field. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"33 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1581","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a rigid-analytic analog of the Pila–Wilkie counting theorem, giving subpolynomial upper bounds for the number of rational points in the transcendental part of a p-analytic set and the number of rational functions in a 𝔽q((t))-analytic set. For ((t))-analytic sets, we prove such bounds uniformly for the specialization to every nonarchimedean local field.

刚性解析集的有理点:一个pila - wilkie型定理
我们建立了Pila-Wilkie计数定理的一个刚性解析类比,给出了一个π -解析集的超越部分上有理点的个数和一个𝔽q((t))-解析集上有理函数的个数的次多项式上界。对于n ((t))-解析集,我们一致地证明了对每一个非阿基米德局部域的专门化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信