The core of monomial ideals

IF 0.9 1区 数学 Q2 MATHEMATICS
Louiza Fouli, Jonathan Montaño, Claudia Polini, Bernd Ulrich
{"title":"The core of monomial ideals","authors":"Louiza Fouli, Jonathan Montaño, Claudia Polini, Bernd Ulrich","doi":"10.2140/ant.2025.19.1463","DOIUrl":null,"url":null,"abstract":"<p>The core of an ideal is defined as the intersection of all of its reductions. We provide an explicit description for the core of a monomial ideal <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math> satisfying certain residual conditions, showing that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> core</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">)</mo></math> coincides with the largest monomial ideal contained in a general reduction of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>I</mi></math>. We prove that the class of lex-segment ideals satisfies these residual conditions and study the core of lex-segment ideals generated in one degree. For monomial ideals that do not necessarily satisfy the residual conditions and that are generated in one degree, we conjecture an explicit formula for the core, and make progress towards this conjecture. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1463","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The core of an ideal is defined as the intersection of all of its reductions. We provide an explicit description for the core of a monomial ideal I satisfying certain residual conditions, showing that core (I) coincides with the largest monomial ideal contained in a general reduction of I. We prove that the class of lex-segment ideals satisfies these residual conditions and study the core of lex-segment ideals generated in one degree. For monomial ideals that do not necessarily satisfy the residual conditions and that are generated in one degree, we conjecture an explicit formula for the core, and make progress towards this conjecture.

单名理想的核心
理想的核心被定义为其所有简化的交集。我们给出了满足某些残差条件的单项式理想I的核的显式描述,证明了核(I)与广义约化I中包含的最大单项式理想重合。我们证明了一类lexlesegment理想满足这些残差条件,并研究了在一次生成的lexlesegment理想的核。对于不一定满足剩余条件的单理想,在一次生成的单理想,我们推测了一个核心的显式公式,并对这一猜想取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信