Algal polysaccharide Sacran-based conductive nanocomposites for ultrathin flexible and biodegradable organic electrochemical transistors

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Katharina Matura, Christoph Putz, Sarka Hradilova, Katerina Polakova, Mihai Irimia-Vladu, Maiko Okajima, Tatsuo Kaneko, Martin Kaltenbrunner, Niyazi Serdar Sariciftci, Serpil Tekoglu
{"title":"Algal polysaccharide Sacran-based conductive nanocomposites for ultrathin flexible and biodegradable organic electrochemical transistors","authors":"Katharina Matura, Christoph Putz, Sarka Hradilova, Katerina Polakova, Mihai Irimia-Vladu, Maiko Okajima, Tatsuo Kaneko, Martin Kaltenbrunner, Niyazi Serdar Sariciftci, Serpil Tekoglu","doi":"10.1038/s41528-025-00436-1","DOIUrl":null,"url":null,"abstract":"<p>Organic electrochemical transistors (OECTs) have emerged as essential components in various applications, including bioelectronics, neuromorphics, sensing, and flexible electronics. Recently, efforts have been directed toward developing flexible and sustainable OECTs to enhance their integration into wearable and implantable biomedical devices. In this work, we introduce a novel PEDOT:Sacran bio-nanocomposite as a channel material for flexible and biodegradable OECTs. Sacran, a high-molecular-weight polysaccharide derived from blue-green algae, possesses exceptional ionic conductivity, water retention, and biocompatibility, making it a promising candidate for bioelectronic applications. We successfully fabricated ultrathin and flexible OECTs on poly(ethylene terephthalate) (PET) foils, achieving transconductance values up to 7.4 mS. The devices exhibited stable ion-to-electron transduction after mechanical deformation. The OECTs were further demonstrated on eco-friendly and biodegradable poly(lactic acid) (PLA) substrates, achieving a transconductance of 1.6 mS and undergoing enzymatic hydrolysis under controlled conditions. This study highlights the potential of Sacran-based conductive bio-nanocomposites in advancing sustainable bioelectronic devices.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"21 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00436-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Organic electrochemical transistors (OECTs) have emerged as essential components in various applications, including bioelectronics, neuromorphics, sensing, and flexible electronics. Recently, efforts have been directed toward developing flexible and sustainable OECTs to enhance their integration into wearable and implantable biomedical devices. In this work, we introduce a novel PEDOT:Sacran bio-nanocomposite as a channel material for flexible and biodegradable OECTs. Sacran, a high-molecular-weight polysaccharide derived from blue-green algae, possesses exceptional ionic conductivity, water retention, and biocompatibility, making it a promising candidate for bioelectronic applications. We successfully fabricated ultrathin and flexible OECTs on poly(ethylene terephthalate) (PET) foils, achieving transconductance values up to 7.4 mS. The devices exhibited stable ion-to-electron transduction after mechanical deformation. The OECTs were further demonstrated on eco-friendly and biodegradable poly(lactic acid) (PLA) substrates, achieving a transconductance of 1.6 mS and undergoing enzymatic hydrolysis under controlled conditions. This study highlights the potential of Sacran-based conductive bio-nanocomposites in advancing sustainable bioelectronic devices.

Abstract Image

用于超薄柔性可生物降解有机电化学晶体管的藻多糖sacran基导电纳米复合材料
有机电化学晶体管(OECTs)已成为生物电子学、神经形态学、传感和柔性电子学等各种应用的重要组成部分。最近,人们一直致力于开发灵活和可持续的oect,以增强其与可穿戴和植入式生物医学设备的集成。在这项工作中,我们介绍了一种新的PEDOT:Sacran生物纳米复合材料作为柔性和可生物降解oect的通道材料。Sacran是一种从蓝绿藻中提取的高分子量多糖,具有优异的离子导电性、保水性和生物相容性,是生物电子应用的有前途的候选物。我们成功地在聚对苯二甲酸乙酯(PET)箔上制作了超薄柔性oect,实现了高达7.4 mS的跨导值。该器件在机械变形后表现出稳定的离子-电子转导。OECTs进一步在环保和可生物降解的聚乳酸(PLA)底物上进行了演示,实现了1.6 mS的跨导,并在受控条件下进行了酶解。这项研究强调了基于sacran的导电生物纳米复合材料在推进可持续生物电子器件方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信