Zhicheng Wang, Sahil Kulkarni, Jia Nong, Marco Zamora, Alireza Ebrahimimojarad, Elizabeth Hood, Tea Shuvaeva, Michael Zaleski, Damodar Gullipalli, Emily Wolfe, Carolann Espy, Evguenia Arguiri, Jichuan Wu, Yufei Wang, Oscar A. Marcos-Contreras, Wenchao Song, Vladimir R. Muzykantov, Jinglin Fu, Ravi Radhakrishnan, Jacob W. Myerson, Jacob S. Brenner
{"title":"A percolation phase transition controls complement protein coating of surfaces","authors":"Zhicheng Wang, Sahil Kulkarni, Jia Nong, Marco Zamora, Alireza Ebrahimimojarad, Elizabeth Hood, Tea Shuvaeva, Michael Zaleski, Damodar Gullipalli, Emily Wolfe, Carolann Espy, Evguenia Arguiri, Jichuan Wu, Yufei Wang, Oscar A. Marcos-Contreras, Wenchao Song, Vladimir R. Muzykantov, Jinglin Fu, Ravi Radhakrishnan, Jacob W. Myerson, Jacob S. Brenner","doi":"10.1016/j.cell.2025.05.026","DOIUrl":null,"url":null,"abstract":"When a material enters the body, it is immediately attacked by hundreds of proteins, organized into complex networks of binding interactions and reactions. How do such complex systems interact with a material, “deciding” whether to attack? We focus on the complement system of ∼40 blood proteins that bind microbes, nanoparticles, and medical devices, initiating inflammation. We show a sharp threshold for complement activation upon varying a fundamental material parameter, the surface density of potential complement attachment points. This sharp threshold manifests at scales spanning single nanoparticles to macroscale pathologies, shown here for diverse engineered and living materials. Computational models show these behaviors arise from a minimal subnetwork of complement, manifesting percolation-type critical transitions in the complement response. This criticality switch explains the “decision” of a complex signaling network to interact with a material.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"26 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.05.026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
When a material enters the body, it is immediately attacked by hundreds of proteins, organized into complex networks of binding interactions and reactions. How do such complex systems interact with a material, “deciding” whether to attack? We focus on the complement system of ∼40 blood proteins that bind microbes, nanoparticles, and medical devices, initiating inflammation. We show a sharp threshold for complement activation upon varying a fundamental material parameter, the surface density of potential complement attachment points. This sharp threshold manifests at scales spanning single nanoparticles to macroscale pathologies, shown here for diverse engineered and living materials. Computational models show these behaviors arise from a minimal subnetwork of complement, manifesting percolation-type critical transitions in the complement response. This criticality switch explains the “decision” of a complex signaling network to interact with a material.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.