Franziska Hentzschel, David Jewanski, Yvonne Sokolowski, Pratika Agarwal, Anna Kraeft, Kolja Hildenbrand, Lilian P. Dorner, Mirko Singer, Matthias Marti, Friedrich Frischknecht
{"title":"An atypical Arp2/3 complex is required for Plasmodium DNA segregation and malaria transmission","authors":"Franziska Hentzschel, David Jewanski, Yvonne Sokolowski, Pratika Agarwal, Anna Kraeft, Kolja Hildenbrand, Lilian P. Dorner, Mirko Singer, Matthias Marti, Friedrich Frischknecht","doi":"10.1038/s41564-025-02023-6","DOIUrl":null,"url":null,"abstract":"<p><i>Plasmodium</i> parasites, the causative agents of malaria, undergo crucial developments within the mosquito vector, initiated by the formation of male and female gametes. Male gametogenesis involves three rapid rounds of mitosis without nuclear or cell division, followed by a single round of DNA segregation and nuclear division during gamete budding. How the cell organizes the segregation of eight genomes from a single octoploid nucleus into eight haploid gametes is currently unknown. Here we discovered an atypical Arp2/3 complex in <i>Plasmodium</i> important for DNA segregation during male gametogenesis. Unlike the canonical Arp2/3 complex found in other eukaryotes, <i>Plasmodium</i> Arp2/3 localizes to endomitotic spindles and interacts with a kinetochore-associated protein. Disruption of Arp2/3 subunits or actin polymerization interferes with kinetochore–spindle association, causes the formation of subhaploid gametes, and blocks transmission. Our work identified an evolutionary divergent Arp2/3 complex in malaria parasites, provides insights into gametogenesis, and reveals potential targets for transmission-blocking interventions.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"12 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-02023-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasmodium parasites, the causative agents of malaria, undergo crucial developments within the mosquito vector, initiated by the formation of male and female gametes. Male gametogenesis involves three rapid rounds of mitosis without nuclear or cell division, followed by a single round of DNA segregation and nuclear division during gamete budding. How the cell organizes the segregation of eight genomes from a single octoploid nucleus into eight haploid gametes is currently unknown. Here we discovered an atypical Arp2/3 complex in Plasmodium important for DNA segregation during male gametogenesis. Unlike the canonical Arp2/3 complex found in other eukaryotes, Plasmodium Arp2/3 localizes to endomitotic spindles and interacts with a kinetochore-associated protein. Disruption of Arp2/3 subunits or actin polymerization interferes with kinetochore–spindle association, causes the formation of subhaploid gametes, and blocks transmission. Our work identified an evolutionary divergent Arp2/3 complex in malaria parasites, provides insights into gametogenesis, and reveals potential targets for transmission-blocking interventions.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.