{"title":"Engineered sEVs encapsulated in GelMA facilitated diabetic wound healing by promoting angiogenesis via targeting thrombospondin-1","authors":"Yan Cong, Sheng Meng, Xiaoye Xie, Yiqi Chen, Yucong Li, Yingqian Zhou, Wandi Li, Lipeng Zhang, Guoqing Yang, Qian Wei, Chuan'an Shen","doi":"10.1093/burnst/tkaf036","DOIUrl":null,"url":null,"abstract":"Background Chronic nonhealing wounds are major complications in diabetic patients, with impaired angiogenesis playing a critical role in the delayed healing process. Current treatments for diabetic wounds are inadequate. The dysregulation of endothelial cell genes, particularly thrombospondin-1 (TSP-1), impairs neovascularization and delays wound repair. In recent years, hydrogel-based wound dressings have gained widespread application in biomedicine. The study introduced a new therapeutic approach, embedding miR-221-3p-loaded small extracellular vesicles (miR-221OE-sEVs) within gelatin methacryloyl (GelMA) hydrogels to reduce TSP-1 level and improve healing in diabetic wounds. Methods First, we observed upregulated TSP-1 expression in human umbilical vein endothelial cells (HUVECs) when cultured in a high glucose (HG) environment. We employed siRNA and miR-221-3p to suppress TSP-1 expression then evaluate the functional effects on HUVECs. Subsequently, miR-221-3p was encapsulated in sEVs via lentiviral transfection. The effects of miR-221OE-sEVs on HUVECs under HG conditions were evaluated. Finally, miR-221OE-sEVs were incorporated into a GelMA hydrogel (G-miR-221OE-sEVs) and applied to a diabetic murine wound model to evaluate their effects on wound closure and angiogenesis. Results Under HG conditions, the use of siTSP-1 to silence TSP-1 enhanced the proliferation, migration, and tube formation capabilities of HUVECs. Similarly, miR-221-3p treatment exerted proregenerative effects via the targeting of TSP-1. We successfully generated miR-221OE-sEVs that exhibited a 28-fold increase in miR-221-3p expression, which significantly enhanced HUVEC functionality under HG conditions. Encapsulation within the GelMA hydrogel enabled G-miR-221OE-sEVs to significantly accelerate diabetic wound healing via increased angiogenesis. Conclusion This study demonstrated the successful fabrication of a novel bioactive wound dressing (G-miR-221OE-sEVs), which promotes diabetic wound healing by promoting angiogenesis through the regulation of TSP-1. This approach offers a potential therapeutic option for enhancing the management of diabetic wounds.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"102 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkaf036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background Chronic nonhealing wounds are major complications in diabetic patients, with impaired angiogenesis playing a critical role in the delayed healing process. Current treatments for diabetic wounds are inadequate. The dysregulation of endothelial cell genes, particularly thrombospondin-1 (TSP-1), impairs neovascularization and delays wound repair. In recent years, hydrogel-based wound dressings have gained widespread application in biomedicine. The study introduced a new therapeutic approach, embedding miR-221-3p-loaded small extracellular vesicles (miR-221OE-sEVs) within gelatin methacryloyl (GelMA) hydrogels to reduce TSP-1 level and improve healing in diabetic wounds. Methods First, we observed upregulated TSP-1 expression in human umbilical vein endothelial cells (HUVECs) when cultured in a high glucose (HG) environment. We employed siRNA and miR-221-3p to suppress TSP-1 expression then evaluate the functional effects on HUVECs. Subsequently, miR-221-3p was encapsulated in sEVs via lentiviral transfection. The effects of miR-221OE-sEVs on HUVECs under HG conditions were evaluated. Finally, miR-221OE-sEVs were incorporated into a GelMA hydrogel (G-miR-221OE-sEVs) and applied to a diabetic murine wound model to evaluate their effects on wound closure and angiogenesis. Results Under HG conditions, the use of siTSP-1 to silence TSP-1 enhanced the proliferation, migration, and tube formation capabilities of HUVECs. Similarly, miR-221-3p treatment exerted proregenerative effects via the targeting of TSP-1. We successfully generated miR-221OE-sEVs that exhibited a 28-fold increase in miR-221-3p expression, which significantly enhanced HUVEC functionality under HG conditions. Encapsulation within the GelMA hydrogel enabled G-miR-221OE-sEVs to significantly accelerate diabetic wound healing via increased angiogenesis. Conclusion This study demonstrated the successful fabrication of a novel bioactive wound dressing (G-miR-221OE-sEVs), which promotes diabetic wound healing by promoting angiogenesis through the regulation of TSP-1. This approach offers a potential therapeutic option for enhancing the management of diabetic wounds.
期刊介绍:
The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.