Natalia Gonzalez-Martinez, Ruben M. F. Tomás, Akalabya Bissoyi, Agnieszka Nagorska, Alexandru Ilie and Matthew I. Gibson
{"title":"Cryopreservation and post-thaw differentiation of monocytes enabled by macromolecular cryoprotectants which restrict intracellular ice formation†","authors":"Natalia Gonzalez-Martinez, Ruben M. F. Tomás, Akalabya Bissoyi, Agnieszka Nagorska, Alexandru Ilie and Matthew I. Gibson","doi":"10.1039/D5LP00131E","DOIUrl":null,"url":null,"abstract":"<p >THP-1 is a monocytic cell line which can differentiate into macrophage and dendritic cells, widely used in immunology. Immune cells are particularly sensitive to cryopreservation, leading to low recovery and/or reduced differentiation capacity compared to non-frozen cells. Current cryopreservation protocols are unsuitable to cryopreserve THP-1 cells in ‘assay-ready’ format, due to the time and resource intensive culturing steps required post-thaw to recover functional cells. We report the cryopreservation of THP-1 cells in vial and multi-well plate format, with significantly enhanced recovery compared to commercial cryoprotectants. This was achieved using macromolecular cryoprotectants (polyampholytes and ice nucleators) which doubled post-thaw recovery relative to DMSO-alone and improved macrophage phenotype post-differentiation comparable to non-frozen controls. Cryo-Raman microscopy demonstrated that the polyampholytes reduced intracellular ice formation compared to DMSO-alone. These results will enable routine banking and ‘assay-ready’ THP-1 cells direct from the freezer, accelerating immunological research.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 4","pages":" 990-1001"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00131e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
THP-1 is a monocytic cell line which can differentiate into macrophage and dendritic cells, widely used in immunology. Immune cells are particularly sensitive to cryopreservation, leading to low recovery and/or reduced differentiation capacity compared to non-frozen cells. Current cryopreservation protocols are unsuitable to cryopreserve THP-1 cells in ‘assay-ready’ format, due to the time and resource intensive culturing steps required post-thaw to recover functional cells. We report the cryopreservation of THP-1 cells in vial and multi-well plate format, with significantly enhanced recovery compared to commercial cryoprotectants. This was achieved using macromolecular cryoprotectants (polyampholytes and ice nucleators) which doubled post-thaw recovery relative to DMSO-alone and improved macrophage phenotype post-differentiation comparable to non-frozen controls. Cryo-Raman microscopy demonstrated that the polyampholytes reduced intracellular ice formation compared to DMSO-alone. These results will enable routine banking and ‘assay-ready’ THP-1 cells direct from the freezer, accelerating immunological research.