The effect of device geometry on the performance of a wave energy converter.

Emma C Edwards, Craig Whitlam, John Chapman, Jack Hughes, Bryony Redfearn, Scott Brown, Scott Draper, Alistair G L Borthwick, Graham Foster, Dick K-P Yue, Martyn Hann, Deborah Greaves
{"title":"The effect of device geometry on the performance of a wave energy converter.","authors":"Emma C Edwards, Craig Whitlam, John Chapman, Jack Hughes, Bryony Redfearn, Scott Brown, Scott Draper, Alistair G L Borthwick, Graham Foster, Dick K-P Yue, Martyn Hann, Deborah Greaves","doi":"10.1038/s44172-025-00441-2","DOIUrl":null,"url":null,"abstract":"<p><p>Wave energy presents an excellent opportunity to add much-needed diversification to the global renewable energy portfolio. However, a competitive levelised cost of electricity for wave energy conversion devices is yet to be proven. Here, we optimise the geometry of a wave energy device to maximise power while also minimising the power take-off reaction moments. Using theory, numerical modelling and optimisation techniques, we show that by including minimisation of reaction moments in the optimisation, instead of only maximisation of power, it is possible to substantially lower the design loads while maintaining high efficiency. Using the underlying physics of how geometry affects the wave-structure interaction, we explain the resulting performance of these new designs for wave energy converters. We examine the resulting geometries for practicality, including performance over a wide range of sea states, motion requirements, and performance in a real sea-state off the coast of Scotland, United Kingdom. Comparing against the single shape which extracts the theoretical maximum power, the optimal shapes found in our study extract almost as much power (12% less) with substantially less moment (reduced by up to 35%), revealing a promising direction for wave energy development.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"107"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00441-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wave energy presents an excellent opportunity to add much-needed diversification to the global renewable energy portfolio. However, a competitive levelised cost of electricity for wave energy conversion devices is yet to be proven. Here, we optimise the geometry of a wave energy device to maximise power while also minimising the power take-off reaction moments. Using theory, numerical modelling and optimisation techniques, we show that by including minimisation of reaction moments in the optimisation, instead of only maximisation of power, it is possible to substantially lower the design loads while maintaining high efficiency. Using the underlying physics of how geometry affects the wave-structure interaction, we explain the resulting performance of these new designs for wave energy converters. We examine the resulting geometries for practicality, including performance over a wide range of sea states, motion requirements, and performance in a real sea-state off the coast of Scotland, United Kingdom. Comparing against the single shape which extracts the theoretical maximum power, the optimal shapes found in our study extract almost as much power (12% less) with substantially less moment (reduced by up to 35%), revealing a promising direction for wave energy development.

器件几何形状对波能转换器性能的影响。
波浪能提供了一个极好的机会,为全球可再生能源组合增加了急需的多样化。然而,波浪能转换装置具有竞争力的电力成本尚未得到证实。在这里,我们优化了波浪能装置的几何形状,以最大限度地提高功率,同时最大限度地减少功率输出反应力矩。利用理论、数值模拟和优化技术,我们表明,通过在优化中包括反应力矩的最小化,而不仅仅是功率的最大化,可以在保持高效率的同时大幅降低设计负载。利用几何几何如何影响波-结构相互作用的基本物理原理,我们解释了这些波能转换器新设计的最终性能。我们研究了最终的几何形状的实用性,包括在各种海况下的性能、运动要求以及在英国苏格兰海岸的实际海况下的性能。与提取理论最大功率的单一形状相比,我们研究中发现的最佳形状提取的功率几乎相同(减少12%),而弯矩却大大减少(减少高达35%),揭示了波浪能开发的有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信