Liangliang Liu, Itzel Astiazarán Rascón, Dong Lin, Yuchao Ni, Xin Dong, Hui Xue, Yen-Yi Lin, Anne Haegert, Funda Sar, James W Peacock, Tabitha Tombe, Christopher Dusek, Amina Zoubeidi, Martin E Gleave, Colin Collins, Francois Bénard, Yuzhuo Wang, Christopher J Ong
{"title":"CXCR4-LASP1-G9a-SNAIL axis drives NEPC transdifferentiation via induction of EMT and downregulation of REST.","authors":"Liangliang Liu, Itzel Astiazarán Rascón, Dong Lin, Yuchao Ni, Xin Dong, Hui Xue, Yen-Yi Lin, Anne Haegert, Funda Sar, James W Peacock, Tabitha Tombe, Christopher Dusek, Amina Zoubeidi, Martin E Gleave, Colin Collins, Francois Bénard, Yuzhuo Wang, Christopher J Ong","doi":"10.1016/j.xgen.2025.100916","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic switching is an emerging driver of cancer treatment resistance, yet early signals regulating this process remain unclear. Here, using longitudinal single-cell RNA sequencing, we mapped differentiation trajectories in the LTL331 prostate adenocarcinoma patient-derived xenograft (PDX) model undergoing neuroendocrine prostate cancer (NEPC) transformation post castration. Our analyses identified a key differentiation node marked by epithelial-mesenchymal transition (EMT) and repressor element-1 silencing transcription factor (REST) downregulation driven by the CXCR4-LASP1-G9a-SNAIL axis. Mechanistically, CXCR4 activation promotes nuclear translocation of LASP1 that links G9a and SNAIL via SH3/proline-rich motif and LIM/SNAG domain interactions, enabling SNAIL-mediated REST repression via promoter E-box motifs. Inhibition of CXCR4 or G9a reversed LTL331R NEPC cells toward a luminal androgen receptor-active phenotype. CXCR4-targeted radioligands enabled both imaging and inhibition of NEPC tumors in vivo. These findings highlight the CXCR4-LASP1-G9a-SNAIL axis as a key regulator of epigenetic and transcriptional reprogramming in NEPC transdifferentiation and support its therapeutic targeting in aggressive NEPC.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100916"},"PeriodicalIF":11.1000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenotypic switching is an emerging driver of cancer treatment resistance, yet early signals regulating this process remain unclear. Here, using longitudinal single-cell RNA sequencing, we mapped differentiation trajectories in the LTL331 prostate adenocarcinoma patient-derived xenograft (PDX) model undergoing neuroendocrine prostate cancer (NEPC) transformation post castration. Our analyses identified a key differentiation node marked by epithelial-mesenchymal transition (EMT) and repressor element-1 silencing transcription factor (REST) downregulation driven by the CXCR4-LASP1-G9a-SNAIL axis. Mechanistically, CXCR4 activation promotes nuclear translocation of LASP1 that links G9a and SNAIL via SH3/proline-rich motif and LIM/SNAG domain interactions, enabling SNAIL-mediated REST repression via promoter E-box motifs. Inhibition of CXCR4 or G9a reversed LTL331R NEPC cells toward a luminal androgen receptor-active phenotype. CXCR4-targeted radioligands enabled both imaging and inhibition of NEPC tumors in vivo. These findings highlight the CXCR4-LASP1-G9a-SNAIL axis as a key regulator of epigenetic and transcriptional reprogramming in NEPC transdifferentiation and support its therapeutic targeting in aggressive NEPC.