Anusca G Rader, Alexandra P M Cloherty, Kharishma S Patel, Dima D A Almandawi, Jimena Perez-Vargas, Manon E Wildenberg, Vanesa Muncan, Renée R C E Schreurs, François Jean, Carla M S Ribeiro
{"title":"Autophagy-enhancing strategies to promote intestinal viral resistance and mucosal barrier function in SARS-CoV-2 infection.","authors":"Anusca G Rader, Alexandra P M Cloherty, Kharishma S Patel, Dima D A Almandawi, Jimena Perez-Vargas, Manon E Wildenberg, Vanesa Muncan, Renée R C E Schreurs, François Jean, Carla M S Ribeiro","doi":"10.1080/27694127.2025.2514232","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 19 (COVID-19), continues to circulate globally despite the widespread vaccination and therapeutics like Paxlovid, remdesivir, and molnupiravir. COVID-19 is associated with both respiratory and gastrointestinal manifestations, with persistent intestinal pathology contributing to the post-COVID-19 condition. We have previously demonstrated the antiviral activity of autophagy-blocking drugs, such as Berbamine dihydrochloride, against intestinal SARS-CoV-2 acquisition. In addition, the autophagy blockers restored the barrier function of infected intestinal epithelium. In this addendum, using human intestinal organoids, we present evidence for a protective role of intrinsic higher levels of autophagy flux in limiting intestinal SARS-CoV-2 infection. Pharmacological treatment with Akt inhibitor MK-2206 hydrochloride suppressed viral entry into the intestinal epithelium. This antiviral effect of MK-2206 was shown to be dependent on Synaptosomal-associated protein 29-dependent (SNAP-29)-mediated autophagy flux. Furthermore, extrinsically enhanced autophagy with MK-2206 also prevented SARS-CoV-2-induced intestinal barrier damage. Our findings thus underscore the intricate role of autophagy pathways in the dissemination and pathogenesis of intestinal SARS-CoV-2, highlighting the therapeutic potential of host-directed therapies targeting autophagy to intervene in COVID-19-associated sequelae and improve intestinal health.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"4 1","pages":"2514232"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2025.2514232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus disease 19 (COVID-19), continues to circulate globally despite the widespread vaccination and therapeutics like Paxlovid, remdesivir, and molnupiravir. COVID-19 is associated with both respiratory and gastrointestinal manifestations, with persistent intestinal pathology contributing to the post-COVID-19 condition. We have previously demonstrated the antiviral activity of autophagy-blocking drugs, such as Berbamine dihydrochloride, against intestinal SARS-CoV-2 acquisition. In addition, the autophagy blockers restored the barrier function of infected intestinal epithelium. In this addendum, using human intestinal organoids, we present evidence for a protective role of intrinsic higher levels of autophagy flux in limiting intestinal SARS-CoV-2 infection. Pharmacological treatment with Akt inhibitor MK-2206 hydrochloride suppressed viral entry into the intestinal epithelium. This antiviral effect of MK-2206 was shown to be dependent on Synaptosomal-associated protein 29-dependent (SNAP-29)-mediated autophagy flux. Furthermore, extrinsically enhanced autophagy with MK-2206 also prevented SARS-CoV-2-induced intestinal barrier damage. Our findings thus underscore the intricate role of autophagy pathways in the dissemination and pathogenesis of intestinal SARS-CoV-2, highlighting the therapeutic potential of host-directed therapies targeting autophagy to intervene in COVID-19-associated sequelae and improve intestinal health.