Xingyao Chen, Hagai Ligumsky, Charlie Ambrose, Denisse Sibrian, Brian Tran, Daoud Arif, Olga Castellanos, Darren Kessner, Hanyi Luo, Mukta Ubale, Abigail Coleman, Vaidhyanathan Mahaganapathy, Thomas J Jönsson, Reva K Basho, Jerry S H Lee, Naim Matasci, David B Agus
{"title":"Monitoring the rate and variability of somatic genomic alterations using long-read sequencing.","authors":"Xingyao Chen, Hagai Ligumsky, Charlie Ambrose, Denisse Sibrian, Brian Tran, Daoud Arif, Olga Castellanos, Darren Kessner, Hanyi Luo, Mukta Ubale, Abigail Coleman, Vaidhyanathan Mahaganapathy, Thomas J Jönsson, Reva K Basho, Jerry S H Lee, Naim Matasci, David B Agus","doi":"10.1038/s41598-025-01690-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer initiation occurs when a cell acquires and accumulates mutations in genes involved in the regulation of cell processes: each cell division throughout a person's life introduces novel mutations in the cells' DNA and under normal circumstances, the body is primed to prevent those from leading to cancer. Occasionally, a subset of those mutations escapes those safeguards and might eventually result in the emergence of the disease. To understand the dynamics of accumulation of somatic mutations, we have performed longitudinal whole genome sequencing of DNA obtained from whole blood from healthy individuals and cancer patients using Oxford Nanopore Technologies' Long Read Sequencing. Here we show that the number of somatic single nucleotide variants detected increases with their age and that for specific mutational processes, changes can be detected within months. We computed aggregated metrics for unique participants at each timepoint across types of variants (based on single based substitution molecular signatures) and identified patterns of change both over an individual's lifespan (age) and over the sampling period (months). This study showcases the suitability of long read sequencing of blood DNA for detecting coarse-grained differences over time and enable future development of \"state of the system\" personalized prevention programs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"18397"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-01690-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer initiation occurs when a cell acquires and accumulates mutations in genes involved in the regulation of cell processes: each cell division throughout a person's life introduces novel mutations in the cells' DNA and under normal circumstances, the body is primed to prevent those from leading to cancer. Occasionally, a subset of those mutations escapes those safeguards and might eventually result in the emergence of the disease. To understand the dynamics of accumulation of somatic mutations, we have performed longitudinal whole genome sequencing of DNA obtained from whole blood from healthy individuals and cancer patients using Oxford Nanopore Technologies' Long Read Sequencing. Here we show that the number of somatic single nucleotide variants detected increases with their age and that for specific mutational processes, changes can be detected within months. We computed aggregated metrics for unique participants at each timepoint across types of variants (based on single based substitution molecular signatures) and identified patterns of change both over an individual's lifespan (age) and over the sampling period (months). This study showcases the suitability of long read sequencing of blood DNA for detecting coarse-grained differences over time and enable future development of "state of the system" personalized prevention programs.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.