{"title":"Bayesian optimization and machine learning for vaccine formulation development.","authors":"Lillian Li, Sung-In Back, Jian Ma, Yawen Guo, Thomas Galeandro-Diamant, Didier Clénet","doi":"10.1371/journal.pone.0324205","DOIUrl":null,"url":null,"abstract":"<p><p>Developing vaccines with a better stability is an area of improvement to meet the global health needs of preventing infectious diseases. With the advancement of data science and artificial intelligence, innovative approaches have emerged. This manuscript highlights the applications of machine learning through two cases in which Bayesian optimization was used to develop viral vaccine formulations. The two case studies monitored the critical quality attributes of virus A in liquid form by infectious titer loss and virus B in freeze-dried form by glass transition temperature. Stepwise analysis and model optimization demonstrated progressive improvements of model quality and prediction accuracy. The cross-validation matrices of the models' predictions showed high R² and low root mean square errors, indicating their reliability. The prediction accuracy of models was further validated by using test datasets. Model analysis using prediction error plot, Shapeley Additive exPlanations, permutation importance, etc. can provide additional insights into relations between model and experimental design, the influence of features of interest, and non-linear responses. Overall, Bayesian optimization is a useful complementary tool in formulation development that can help scientists make effective data-driven decisions.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0324205"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0324205","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing vaccines with a better stability is an area of improvement to meet the global health needs of preventing infectious diseases. With the advancement of data science and artificial intelligence, innovative approaches have emerged. This manuscript highlights the applications of machine learning through two cases in which Bayesian optimization was used to develop viral vaccine formulations. The two case studies monitored the critical quality attributes of virus A in liquid form by infectious titer loss and virus B in freeze-dried form by glass transition temperature. Stepwise analysis and model optimization demonstrated progressive improvements of model quality and prediction accuracy. The cross-validation matrices of the models' predictions showed high R² and low root mean square errors, indicating their reliability. The prediction accuracy of models was further validated by using test datasets. Model analysis using prediction error plot, Shapeley Additive exPlanations, permutation importance, etc. can provide additional insights into relations between model and experimental design, the influence of features of interest, and non-linear responses. Overall, Bayesian optimization is a useful complementary tool in formulation development that can help scientists make effective data-driven decisions.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage