A novel approach to group decision-making using generalized bipolar neutrosophic sets.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-06-11 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0317746
Aliya Fahmi, Aziz Khan, Thabet Abdeljawad
{"title":"A novel approach to group decision-making using generalized bipolar neutrosophic sets.","authors":"Aliya Fahmi, Aziz Khan, Thabet Abdeljawad","doi":"10.1371/journal.pone.0317746","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces operational laws for Aczél-Alsina aggregation within the framework of generalized bipolar neutrosophic sets (GBNS), tailored for group decision-making scenarios. Novel aggregation operators, including the Generalized Bipolar Neutrosophic Aczél-Alsina Weighted Average (GBNAAWA), Generalized Bipolar Neutrosophic Aczél-Alsina Ordered Weighted Average (GBNAAOWA), Generalized Bipolar Neutrosophic Aczél-Alsina Hybrid Weighted Average (GBNAAHWA), Generalized Bipolar Neutrosophic Aczél-Alsina Weighted Geometric (GBNAAWG), Generalized Bipolar Neutrosophic Aczél-Alsina Ordered Weighted Geometric (GBNAAOWG), and Generalized Bipolar Neutrosophic Aczél-Alsina Hybrid Weighted Geometric (GBNAAHWG), are proposed to address complex decision-making processes under uncertainty. The methodology is demonstrated through a case study and an illustrative example to validate its practical applicability. Comparative and sensitivity analyses highlight the robustness and adaptability of the proposed operators in various decision contexts. Key findings, discussions, and limitations are presented to provide insights into the method's effectiveness and areas for future research. This work contributes to advancing decision-making models by integrating Aczél-Alsina aggregation with bipolar neutrosophic theory, offering a novel approach to handling ambiguity and conflicting information.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0317746"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0317746","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces operational laws for Aczél-Alsina aggregation within the framework of generalized bipolar neutrosophic sets (GBNS), tailored for group decision-making scenarios. Novel aggregation operators, including the Generalized Bipolar Neutrosophic Aczél-Alsina Weighted Average (GBNAAWA), Generalized Bipolar Neutrosophic Aczél-Alsina Ordered Weighted Average (GBNAAOWA), Generalized Bipolar Neutrosophic Aczél-Alsina Hybrid Weighted Average (GBNAAHWA), Generalized Bipolar Neutrosophic Aczél-Alsina Weighted Geometric (GBNAAWG), Generalized Bipolar Neutrosophic Aczél-Alsina Ordered Weighted Geometric (GBNAAOWG), and Generalized Bipolar Neutrosophic Aczél-Alsina Hybrid Weighted Geometric (GBNAAHWG), are proposed to address complex decision-making processes under uncertainty. The methodology is demonstrated through a case study and an illustrative example to validate its practical applicability. Comparative and sensitivity analyses highlight the robustness and adaptability of the proposed operators in various decision contexts. Key findings, discussions, and limitations are presented to provide insights into the method's effectiveness and areas for future research. This work contributes to advancing decision-making models by integrating Aczél-Alsina aggregation with bipolar neutrosophic theory, offering a novel approach to handling ambiguity and conflicting information.

一种利用广义双极嗜中性集进行群体决策的新方法。
本研究介绍了在广义双极性中性粒细胞集(GBNS)框架下,针对群体决策场景量身定制的acz - al_na聚合的操作规律。新型聚合算子,包括广义双相中性aczp25 - alsina加权平均算子(GBNAAWA)、广义双相中性aczp25 - alsina有序加权平均算子(GBNAAOWA)、广义双相中性aczp25 - alsina混合加权平均算子(GBNAAHWA)、广义双相中性aczp25 - alsina加权几何算子(GBNAAWG)、广义双相中性aczp25 - alsina有序加权几何算子(GBNAAOWG)、和广义双极性中性acz - alsina混合加权几何(GBNAAHWG),以解决不确定性下的复杂决策过程。最后,通过实例分析和举例说明验证了该方法的实用性。对比分析和敏感性分析强调了所提出的算子在各种决策环境中的鲁棒性和适应性。主要的发现、讨论和局限性被提出,以提供对该方法的有效性和未来研究领域的见解。本研究通过将acz - alsina聚合与双极嗜中性理论相结合,为改进决策模型做出了贡献,为处理歧义和冲突信息提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信