Irene Santamaria-Castro, Rocio Leiva-Rebollo, Sonia Marín-Wong, Jose M Jimenez-Guardeño, Ana Maria Ortega-Prieto
{"title":"Molecular mechanisms of SARS-CoV-2 entry: implications for biomedical strategies.","authors":"Irene Santamaria-Castro, Rocio Leiva-Rebollo, Sonia Marín-Wong, Jose M Jimenez-Guardeño, Ana Maria Ortega-Prieto","doi":"10.1128/mmbr.00260-24","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYThe mechanisms by which viruses enter host cells are crucial for their ability to infect and cause disease, serving as major targets for both host immune responses and therapeutic strategies. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry process is primarily driven by the binding of the viral spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) receptor, in conjunction with the activity of endosomal cathepsin L and the serine protease transmembrane protease serine 2 (TMPRSS2). Nevertheless, recent scientific advances have expanded our understanding of SARS-CoV-2 entry mechanisms, uncovering alternative receptors and novel cofactors that may enhance viral tropism and adaptability. Given the critical role of the SARS-CoV-2 S protein in mediating host cell entry, it has become a primary target for prevention and therapeutic strategies. However, the continuous spread of SARS-CoV-2 has led to the emergence of S protein variants that may potentially confer a fitness advantage or modify key aspects of SARS-CoV-2 biology, such as transmissibility, infectivity, antigenicity, and/or pathogenicity, posing significant challenges to the efficacy of current interventions. In this review, we provide an updated and comprehensive overview of the latest advances in SARS-CoV-2 entry pathways and molecular mechanisms, exploring their implications for antiviral drug discovery, vaccine design, and the development of other biomedical strategies while addressing the challenges posed by the ongoing evolution of the virus.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0026024"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00260-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SUMMARYThe mechanisms by which viruses enter host cells are crucial for their ability to infect and cause disease, serving as major targets for both host immune responses and therapeutic strategies. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry process is primarily driven by the binding of the viral spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) receptor, in conjunction with the activity of endosomal cathepsin L and the serine protease transmembrane protease serine 2 (TMPRSS2). Nevertheless, recent scientific advances have expanded our understanding of SARS-CoV-2 entry mechanisms, uncovering alternative receptors and novel cofactors that may enhance viral tropism and adaptability. Given the critical role of the SARS-CoV-2 S protein in mediating host cell entry, it has become a primary target for prevention and therapeutic strategies. However, the continuous spread of SARS-CoV-2 has led to the emergence of S protein variants that may potentially confer a fitness advantage or modify key aspects of SARS-CoV-2 biology, such as transmissibility, infectivity, antigenicity, and/or pathogenicity, posing significant challenges to the efficacy of current interventions. In this review, we provide an updated and comprehensive overview of the latest advances in SARS-CoV-2 entry pathways and molecular mechanisms, exploring their implications for antiviral drug discovery, vaccine design, and the development of other biomedical strategies while addressing the challenges posed by the ongoing evolution of the virus.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.