Liping Zhao, Hui Zhang, Li Zha, Xicheng Zhou, Meng Yang
{"title":"Bactericidal and anti-biofilm activity of ebastine against Staphylococcus aureus.","authors":"Liping Zhao, Hui Zhang, Li Zha, Xicheng Zhou, Meng Yang","doi":"10.1093/lambio/ovaf086","DOIUrl":null,"url":null,"abstract":"<p><p>Drug repurposing, offers promising opportunities to address infections caused by multidrug-resistant bacteria. This study was to evaluate the bactericidal activity, anti-biofilm properties, and potential mechanisms of the antihistamine drug ebastine against S. aureus. The minimum inhibitory concentrations of ebastine against standard and clinical S. aureus isolates were determined using the broth microdilution method. The MIC values ranged from 2 to 8 µg·mL-1, indicating good activity against clinical drug-resistant strains. Time-kill curve analyses revealed a dose-dependent bactericidal effect. Regarding anti-biofilm activity, ebastine significantly inhibited biofilm formation at higher concentrations and demonstrated a moderate ability to eradicate preformed biofilms. Mechanistic studies revealed that ebastine exerted the antimicrobial effects by causing disruption to bacterial membrane integrity and inducing reactive oxygen species generation. Furthermore, safety evaluations showed that ebastine exhibited limited toxicity to mammalian cells, with negligible hemolytic effects and good overall safety profiles. This study provided new insights into the potential applications of ebastine in the field of antimicrobial therapy, highlighting its promise as a non-traditional antibacterial agent.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf086","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug repurposing, offers promising opportunities to address infections caused by multidrug-resistant bacteria. This study was to evaluate the bactericidal activity, anti-biofilm properties, and potential mechanisms of the antihistamine drug ebastine against S. aureus. The minimum inhibitory concentrations of ebastine against standard and clinical S. aureus isolates were determined using the broth microdilution method. The MIC values ranged from 2 to 8 µg·mL-1, indicating good activity against clinical drug-resistant strains. Time-kill curve analyses revealed a dose-dependent bactericidal effect. Regarding anti-biofilm activity, ebastine significantly inhibited biofilm formation at higher concentrations and demonstrated a moderate ability to eradicate preformed biofilms. Mechanistic studies revealed that ebastine exerted the antimicrobial effects by causing disruption to bacterial membrane integrity and inducing reactive oxygen species generation. Furthermore, safety evaluations showed that ebastine exhibited limited toxicity to mammalian cells, with negligible hemolytic effects and good overall safety profiles. This study provided new insights into the potential applications of ebastine in the field of antimicrobial therapy, highlighting its promise as a non-traditional antibacterial agent.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.