Jack E Thirkell, Nigel C Bennett, Daniel W Hart, Chris G Faulkes, Monica A Daley, Steven J Portugal
{"title":"Metabolic expenditure of submaximal locomotion in naked mole-rats (Heterocephalus glaber) and Damaraland mole-rats (Fukomys damarensis).","authors":"Jack E Thirkell, Nigel C Bennett, Daniel W Hart, Chris G Faulkes, Monica A Daley, Steven J Portugal","doi":"10.1242/jeb.249875","DOIUrl":null,"url":null,"abstract":"<p><p>Despite extensive studies on the physiology of subterranean rodents, there is comparatively little work documenting the energetics specifically associated with their locomotory energetics. The energetic cost associated with burrowing is great and, in part, explains why subterranean species often maintain their burrows and tunnels across generations. Indeed, the digging metabolic rate of five African mole-rats has been determined to be between three and five times higher than their respective resting metabolic rate, yet the energetic cost of non-digging locomotion (i.e. walking) has not been recorded. Digging in most subterranean species tends to lead to specialisation of the forelimbs and teeth, which may significantly affect the energetic cost associated with non-digging locomotion. Unlike many comparably sized burrowing and tunnelling mammals, African mole-rats appear, superficially at least, to have almost identical forelimbs and hindlimbs. This study explored the locomotory energetics associated with sustained submaximal locomotion (i.e. fast walking; 10 cm s-1) in two African mole-rat species (Fukomys damarensis and Heterocephalus glaber), utilising open-flow respirometry and a small animal treadmill. The mean locomotory energetic rate for F. damarensis was a near 1-fold increase (91.4%) above resting metabolic rate and a 2-fold increase (203.2%) for H. glaber. Net cost of transport was higher overall for H. glaber (2.9±0.6 ml O2 kg-1 m-1) than for F. damarensis (2.4±0.5 ml O2 kg-1 m-1). A trade-off likely exists between limb specialisation for digging and economic locomotion, and thus for most obligately subterranean species, locomotion represents an energetic investment.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268170/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249875","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite extensive studies on the physiology of subterranean rodents, there is comparatively little work documenting the energetics specifically associated with their locomotory energetics. The energetic cost associated with burrowing is great and, in part, explains why subterranean species often maintain their burrows and tunnels across generations. Indeed, the digging metabolic rate of five African mole-rats has been determined to be between three and five times higher than their respective resting metabolic rate, yet the energetic cost of non-digging locomotion (i.e. walking) has not been recorded. Digging in most subterranean species tends to lead to specialisation of the forelimbs and teeth, which may significantly affect the energetic cost associated with non-digging locomotion. Unlike many comparably sized burrowing and tunnelling mammals, African mole-rats appear, superficially at least, to have almost identical forelimbs and hindlimbs. This study explored the locomotory energetics associated with sustained submaximal locomotion (i.e. fast walking; 10 cm s-1) in two African mole-rat species (Fukomys damarensis and Heterocephalus glaber), utilising open-flow respirometry and a small animal treadmill. The mean locomotory energetic rate for F. damarensis was a near 1-fold increase (91.4%) above resting metabolic rate and a 2-fold increase (203.2%) for H. glaber. Net cost of transport was higher overall for H. glaber (2.9±0.6 ml O2 kg-1 m-1) than for F. damarensis (2.4±0.5 ml O2 kg-1 m-1). A trade-off likely exists between limb specialisation for digging and economic locomotion, and thus for most obligately subterranean species, locomotion represents an energetic investment.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.