{"title":"The mechanical effect of aligner's thickness and material properties in invisible orthodontics: A quantitative finite element study.","authors":"Waheed Ahmad, Jing Xiong, Zeyang Xia","doi":"10.4012/dmj.2024-085","DOIUrl":null,"url":null,"abstract":"<p><p>Invisible orthodontics benefits significantly from aligner technology, yet optimizing material properties and thickness for diverse patient needs is a challenge. The aim of this study was to investigate the interaction between key material properties and thickness-and their collective influence on orthodontic treatment outcomes. A three-dimensional model of the tooth, periodontal ligament, and bone complex was constructed, with attachments centered on each tooth crown. Nine aligners, varying in thickness from 0.20 to 1.00 mm with material properties (Young's modulus (E) from 0.01 to 3.50 GPa and Poisson's ratio (ν) at 0.30), were analyzed. The study measured force and moment changes due to a 0.15 mm mesial-distal movement of the lateral incisor, validated by other teeth. Results show aligner thickness and E significantly affect force and moment, with increases promoting translational rather than tipping movements. These findings underscore precise aligner design's role in enhancing orthodontic outcomes.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Invisible orthodontics benefits significantly from aligner technology, yet optimizing material properties and thickness for diverse patient needs is a challenge. The aim of this study was to investigate the interaction between key material properties and thickness-and their collective influence on orthodontic treatment outcomes. A three-dimensional model of the tooth, periodontal ligament, and bone complex was constructed, with attachments centered on each tooth crown. Nine aligners, varying in thickness from 0.20 to 1.00 mm with material properties (Young's modulus (E) from 0.01 to 3.50 GPa and Poisson's ratio (ν) at 0.30), were analyzed. The study measured force and moment changes due to a 0.15 mm mesial-distal movement of the lateral incisor, validated by other teeth. Results show aligner thickness and E significantly affect force and moment, with increases promoting translational rather than tipping movements. These findings underscore precise aligner design's role in enhancing orthodontic outcomes.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.