Xinxiang Cheng, Xin Ge, Chi Zhang, Xingye Yang, Zhengxin Yu, Min Zhang, Wen Cao, Qingtao Ni, Yang Liu, Songbing He, Yin Yuan
{"title":"Tryptophan Suppresses FTH1-Driven Ferritinophagy, a Key Correlate of Prognosis in Hepatocellular Carcinoma.","authors":"Xinxiang Cheng, Xin Ge, Chi Zhang, Xingye Yang, Zhengxin Yu, Min Zhang, Wen Cao, Qingtao Ni, Yang Liu, Songbing He, Yin Yuan","doi":"10.1111/cpr.70074","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) remains a lethal malignancy with limited therapeutic options. Ferritinophagy, an autophagy-dependent process regulating iron metabolism, has emerged as a key contributor to ferroptosis and tumour progression. This study hypothesised that the ferritinophagy-related gene FTH1 drives HCC pathogenesis by modulating tryptophan metabolism and reactive oxygen species (ROS)-dependent ferroptosis. To test this, we first analysed TCGA data to identify prognostic ferritinophagy genes, revealing FTH1 as a critical risk factor. Functional experiments using FTH1-knockdown/-overexpressing HCC cell lines and xenograft models demonstrated that FTH1 enhances proliferation, migration, and tumour growth by upregulating CYP1A1/CYP1A2 in the tryptophan pathway, thereby increasing the synthesis of 6-hydroxymelatonin (6-HMT). Mechanistically, 6-HMT suppressed ROS and ferroptosis by inhibiting cytochrome P450 oxidoreductase (POR). Concurrently, intracellular tryptophan levels were found to inhibit NCOA4-mediated selective autophagy of FTH1, stabilising FTH1 levels and promoting tumour survival. Collectively, our findings establish FTH1 as a central regulator of ferritinophagy in HCC and reveal its dual role in linking tryptophan metabolism to redox homeostasis. This result provides a hint of how FTH1 influences HCC pathogenesis and positions the tryptophan metabolism pathway as a promising therapeutic target.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70074"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70074","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) remains a lethal malignancy with limited therapeutic options. Ferritinophagy, an autophagy-dependent process regulating iron metabolism, has emerged as a key contributor to ferroptosis and tumour progression. This study hypothesised that the ferritinophagy-related gene FTH1 drives HCC pathogenesis by modulating tryptophan metabolism and reactive oxygen species (ROS)-dependent ferroptosis. To test this, we first analysed TCGA data to identify prognostic ferritinophagy genes, revealing FTH1 as a critical risk factor. Functional experiments using FTH1-knockdown/-overexpressing HCC cell lines and xenograft models demonstrated that FTH1 enhances proliferation, migration, and tumour growth by upregulating CYP1A1/CYP1A2 in the tryptophan pathway, thereby increasing the synthesis of 6-hydroxymelatonin (6-HMT). Mechanistically, 6-HMT suppressed ROS and ferroptosis by inhibiting cytochrome P450 oxidoreductase (POR). Concurrently, intracellular tryptophan levels were found to inhibit NCOA4-mediated selective autophagy of FTH1, stabilising FTH1 levels and promoting tumour survival. Collectively, our findings establish FTH1 as a central regulator of ferritinophagy in HCC and reveal its dual role in linking tryptophan metabolism to redox homeostasis. This result provides a hint of how FTH1 influences HCC pathogenesis and positions the tryptophan metabolism pathway as a promising therapeutic target.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.