Mycosynthesis of silver nanoparticles by Aspergillus templicola OR480102: a multifaceted approach for antibacterial, anticancer, and scratch assay applications.
IF 3.5 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Marwa M Abdel-Kareem, Maysa M A Ali, Abd El-Latif Hesham, Hossam E F Abdel-Raheam, Marwa Obiedallah
{"title":"Mycosynthesis of silver nanoparticles by Aspergillus templicola OR480102: a multifaceted approach for antibacterial, anticancer, and scratch assay applications.","authors":"Marwa M Abdel-Kareem, Maysa M A Ali, Abd El-Latif Hesham, Hossam E F Abdel-Raheam, Marwa Obiedallah","doi":"10.1186/s12896-025-00982-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Regarding their distinct physico-chemical and bioactivity characteristics, silver nanoparticles 'AgNPs' are extensively utilized in numerous scientific purposes.</p><p><strong>Results: </strong>Within this current investigation, for the first time, we evaluated how the extracellular extract of the isolate MAK223 generated exceptionally fixed AgNPs. The isolate was genetically identified as Aspergillus templicola OR480102. The generated AgNPs' physico-chemical characteristics were assessed using ultraviolet-vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectrometry (FT-IR). The maximum absorption in the UV-vis spectrum was obtained at 420 nm, matching the silver nanoparticles' surface plasmon absorbance. A. templicola OR480102 produced uniformly dispersed AgNPs between 5 and 25 nm with a mean dimension of 17.78537 ± 1.36 nm using TEM. FT-IR analysis identified functional groups (e.g., -OH, C = O) in the fungal filtrate that mediate AgNP synthesis and capping. To verify AgNPs stability, the dynamic light scattering (DLS) approach is employed. Optimal conditions for AgNPs synthesis were 10 days of incubation, one mM silver nitrate concentration, pH 11, and elevated temperatures. AgNPs demonstrated efficacy against clinically relevant pathogens: S. typhimurium 'ATCC 14028', B. subtilis 'ATCC 6633', S. aureus 'ATCC 25923', and E. coli 'ATCC 29213' were used in the study. Also, using AgNPs derived from the filtrate of A. templicola OR480102 shows significant potential as a novel therapeutic approach against breast cancer cells 'MCF-7'. The scratch assay of 'MCF-7' cells demonstrates the suppressive impact of AgNPs for these cell lines during proliferation by promoting apoptosis and reducing cell migration.</p><p><strong>Conclusion: </strong>Based on physico-chemical characteristics of AgNPs' and their antimicrobial and anticancer activities, it cleared that the selected strain Aspergillus templicola OR480102 is a promising producer of stable AgNPs' with significant bioactivities which could be applicable in different fields.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"46"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-00982-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Regarding their distinct physico-chemical and bioactivity characteristics, silver nanoparticles 'AgNPs' are extensively utilized in numerous scientific purposes.
Results: Within this current investigation, for the first time, we evaluated how the extracellular extract of the isolate MAK223 generated exceptionally fixed AgNPs. The isolate was genetically identified as Aspergillus templicola OR480102. The generated AgNPs' physico-chemical characteristics were assessed using ultraviolet-vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectrometry (FT-IR). The maximum absorption in the UV-vis spectrum was obtained at 420 nm, matching the silver nanoparticles' surface plasmon absorbance. A. templicola OR480102 produced uniformly dispersed AgNPs between 5 and 25 nm with a mean dimension of 17.78537 ± 1.36 nm using TEM. FT-IR analysis identified functional groups (e.g., -OH, C = O) in the fungal filtrate that mediate AgNP synthesis and capping. To verify AgNPs stability, the dynamic light scattering (DLS) approach is employed. Optimal conditions for AgNPs synthesis were 10 days of incubation, one mM silver nitrate concentration, pH 11, and elevated temperatures. AgNPs demonstrated efficacy against clinically relevant pathogens: S. typhimurium 'ATCC 14028', B. subtilis 'ATCC 6633', S. aureus 'ATCC 25923', and E. coli 'ATCC 29213' were used in the study. Also, using AgNPs derived from the filtrate of A. templicola OR480102 shows significant potential as a novel therapeutic approach against breast cancer cells 'MCF-7'. The scratch assay of 'MCF-7' cells demonstrates the suppressive impact of AgNPs for these cell lines during proliferation by promoting apoptosis and reducing cell migration.
Conclusion: Based on physico-chemical characteristics of AgNPs' and their antimicrobial and anticancer activities, it cleared that the selected strain Aspergillus templicola OR480102 is a promising producer of stable AgNPs' with significant bioactivities which could be applicable in different fields.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.