Plasticity of Myelination.

Q3 Neuroscience
Grace Flower, Svenja Vorthmann, Daniel Fulton, Nicola B Hamilton
{"title":"Plasticity of Myelination.","authors":"Grace Flower, Svenja Vorthmann, Daniel Fulton, Nicola B Hamilton","doi":"10.1007/978-3-031-87919-7_8","DOIUrl":null,"url":null,"abstract":"<p><p>Myelin plasticity, the capacity for dynamic changes in myelination and myelin structure, challenges the long-held view of myelin as a static entity post-development. Emerging evidence highlights its pivotal role in adapting neural circuits during learning, memory, and recovery from injury or disease. This chapter explores the cellular and molecular mechanisms underlying myelin plasticity, focusing on activity-dependent and experience-driven myelination mediated by oligodendrocytes, which are potentially modified by astrocytes and microglia. This study examines how neuronal activity regulates oligodendrocyte differentiation and myelin remodelling, affecting conduction velocity and circuit synchronization. The implications of myelin plasticity in cognition, ageing, and pathologies such as multiple sclerosis and stroke are discussed alongside experimental models that elucidate its processes. Finally, the importance of sleep in myelin maintenance and plasticity is discussed. Elucidating the mechanisms underlying myelin plasticity and maintenance may uncover new therapeutic opportunities for treating diseases and injuries that disrupt myelin and neuronal activity.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"43 ","pages":"181-204"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-87919-7_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Myelin plasticity, the capacity for dynamic changes in myelination and myelin structure, challenges the long-held view of myelin as a static entity post-development. Emerging evidence highlights its pivotal role in adapting neural circuits during learning, memory, and recovery from injury or disease. This chapter explores the cellular and molecular mechanisms underlying myelin plasticity, focusing on activity-dependent and experience-driven myelination mediated by oligodendrocytes, which are potentially modified by astrocytes and microglia. This study examines how neuronal activity regulates oligodendrocyte differentiation and myelin remodelling, affecting conduction velocity and circuit synchronization. The implications of myelin plasticity in cognition, ageing, and pathologies such as multiple sclerosis and stroke are discussed alongside experimental models that elucidate its processes. Finally, the importance of sleep in myelin maintenance and plasticity is discussed. Elucidating the mechanisms underlying myelin plasticity and maintenance may uncover new therapeutic opportunities for treating diseases and injuries that disrupt myelin and neuronal activity.

髓鞘形成的可塑性。
髓鞘可塑性,即髓鞘形成和髓鞘结构动态变化的能力,挑战了长期以来认为髓鞘是发育后的静态实体的观点。新出现的证据强调了它在学习、记忆和从损伤或疾病中恢复过程中适应神经回路的关键作用。本章探讨髓磷脂可塑性的细胞和分子机制,重点关注由少突胶质细胞介导的活动依赖和经验驱动的髓鞘形成,这可能被星形胶质细胞和小胶质细胞修饰。本研究探讨了神经元活动如何调节少突胶质细胞分化和髓鞘重塑,影响传导速度和电路同步。髓磷脂可塑性在认知、衰老、多发性硬化症和中风等疾病中的意义与阐明其过程的实验模型一起被讨论。最后,讨论了睡眠在髓磷脂维持和可塑性中的重要性。阐明髓磷脂可塑性和维持的机制可能为治疗破坏髓磷脂和神经元活动的疾病和损伤提供新的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信