Electrostatic Shielding to Stabilize Buried Interface Toward High-Performance Inorganic Perovskite Solar Cells.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Min Wu, Wenzhe Li, Renquan Hu, Wenwen Wu, Hui Xiong, Yuhuan Lin, Ziyu Tan, Meng Yan, Jiandong Fan, Yong Yang
{"title":"Electrostatic Shielding to Stabilize Buried Interface Toward High-Performance Inorganic Perovskite Solar Cells.","authors":"Min Wu, Wenzhe Li, Renquan Hu, Wenwen Wu, Hui Xiong, Yuhuan Lin, Ziyu Tan, Meng Yan, Jiandong Fan, Yong Yang","doi":"10.1002/smtd.202500554","DOIUrl":null,"url":null,"abstract":"<p><p>Halide migration limits the stability of inorganic perovskite solar cells. It is demonstrated that the perovskite thin film undergoes a non-photovoltaic phase transition at a high temperature of 100 °C with a hole transport layer Poly(3-hexylthiophene-2,5-diyl) (P3HT), due to the iodine diffusion to P3HT through electrostatic interaction. To address this issue, a charge depolarization strategy is implemented by incorporating Chevrel phase Mo<sub>6</sub>S<sub>8</sub> nanosheets into P3HT. The covalent coupling between Mo<sub>6</sub>S<sub>8</sub> and the P3HT backbone redistributes interfacial charges, effectively suppressing the positive potential sites (C δ<sup>+</sup>) in P3HT and reducing its electrostatic attraction to iodine ions. The charge transfer through the S─Mo bond promotes the P3HT oxidized states generation and rearranges the energy alignment, which thereby contributes to a highly efficient charge collection in solar cell devices. The device structure used is FTO/TiO<sub>2</sub>/CsPbI<sub>2.95</sub>Br<sub>0.05</sub>/P3HT/Ag. When the Mo<sub>6</sub>S<sub>8</sub>-incorporated, the PCE of perovskite solar cells improves from 18.43 to 20.46%. The inorganic devices demonstrate high stability, retaining 93% of their initial efficiency after 5280 h in ambient air (t = 25 °C, R.H. = 25%) and 95% of their initial efficiency after 989 h at 85 °C in ambient air.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500554"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500554","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Halide migration limits the stability of inorganic perovskite solar cells. It is demonstrated that the perovskite thin film undergoes a non-photovoltaic phase transition at a high temperature of 100 °C with a hole transport layer Poly(3-hexylthiophene-2,5-diyl) (P3HT), due to the iodine diffusion to P3HT through electrostatic interaction. To address this issue, a charge depolarization strategy is implemented by incorporating Chevrel phase Mo6S8 nanosheets into P3HT. The covalent coupling between Mo6S8 and the P3HT backbone redistributes interfacial charges, effectively suppressing the positive potential sites (C δ+) in P3HT and reducing its electrostatic attraction to iodine ions. The charge transfer through the S─Mo bond promotes the P3HT oxidized states generation and rearranges the energy alignment, which thereby contributes to a highly efficient charge collection in solar cell devices. The device structure used is FTO/TiO2/CsPbI2.95Br0.05/P3HT/Ag. When the Mo6S8-incorporated, the PCE of perovskite solar cells improves from 18.43 to 20.46%. The inorganic devices demonstrate high stability, retaining 93% of their initial efficiency after 5280 h in ambient air (t = 25 °C, R.H. = 25%) and 95% of their initial efficiency after 989 h at 85 °C in ambient air.

静电屏蔽稳定埋藏界面的高性能无机钙钛矿太阳能电池。
卤化物迁移限制了无机钙钛矿太阳能电池的稳定性。结果表明,钙钛矿薄膜在100℃高温下发生非光伏相变,并形成空穴传输层聚(3-己基噻吩-2,5-二基)(P3HT),这是由于碘通过静电相互作用扩散到P3HT。为了解决这一问题,将Chevrel相Mo6S8纳米片掺入P3HT中实现了电荷去极化策略。Mo6S8与P3HT主链之间的共价偶联使界面电荷重新分布,有效抑制了P3HT中的正电位位点(C δ+),降低了P3HT对碘离子的静电吸引力。通过S─Mo键的电荷转移促进了P3HT氧化态的产生,并重新排列了能量排列,从而有助于太阳能电池器件中高效的电荷收集。器件结构为FTO/TiO2/CsPbI2.95Br0.05/P3HT/Ag。加入mo6s8后,钙钛矿太阳能电池的PCE由18.43提高到20.46%。无机器件表现出很高的稳定性,在环境空气中(t = 25℃,R.H. = 25%) 5280 h后保持93%的初始效率,在环境空气中(85℃)989 h后保持95%的初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信