Tunable Oxygen Vacancies Enable Dynamic Infrared Response for Efficient CO2 Reduction on Plasmonic BiOx.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-12 DOI:10.1002/cssc.202501050
Chen Liao, Mengyu Wang, Xiaofeng Kang, Dan Lei, Tengfei Ma, Ya Liu, Liejin Guo
{"title":"Tunable Oxygen Vacancies Enable Dynamic Infrared Response for Efficient CO2 Reduction on Plasmonic BiOx.","authors":"Chen Liao, Mengyu Wang, Xiaofeng Kang, Dan Lei, Tengfei Ma, Ya Liu, Liejin Guo","doi":"10.1002/cssc.202501050","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic CO2 reduction offers a sustainable route to convert CO2 into value-added fuels, yet remains limited by poor infrared light utilization. Here, we report a nonmetallic plasmonic BiOx photocatalyst with tunable oxygen vacancies that enable continuous adjustment of infrared absorption from 700 to 1700 nm. By varying calcination temperature, the carrier concentration and localized surface plasmon resonance (LSPR) response are effectively modulated. Combined XPS, Mott-Schottky analysis, and control experiments reveal that gradient oxygen vacancies play a key role in regulating plasmonic intensity and catalytic activity. The optimized BiOx-180°C catalyst achieves efficient CO2 reduction under near-infrared illumination (>800 nm), delivering a total production rate of 3 μmol g-1 h-1 with 50.5% selectivity toward C2 products, which is 2.7 times higher than under UV-Vis light. Moreover, under full-spectrum illumination, BiOx exhibited an increased total product yield, demonstrating the synergistic effect between interband transitions and plasmonic excitations. Quasi-in situ XPS, light-assisted KPFM, and in situ DRIFTS further reveal that the LSPR effect facilitates C-C coupling pathways, promoting the generation of C2 products. This study highlights the potential of dynamic infrared response modulation in plasmonic semiconductors to advance efficient, broadband-driven photocatalytic CO2 reduction.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501050"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501050","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic CO2 reduction offers a sustainable route to convert CO2 into value-added fuels, yet remains limited by poor infrared light utilization. Here, we report a nonmetallic plasmonic BiOx photocatalyst with tunable oxygen vacancies that enable continuous adjustment of infrared absorption from 700 to 1700 nm. By varying calcination temperature, the carrier concentration and localized surface plasmon resonance (LSPR) response are effectively modulated. Combined XPS, Mott-Schottky analysis, and control experiments reveal that gradient oxygen vacancies play a key role in regulating plasmonic intensity and catalytic activity. The optimized BiOx-180°C catalyst achieves efficient CO2 reduction under near-infrared illumination (>800 nm), delivering a total production rate of 3 μmol g-1 h-1 with 50.5% selectivity toward C2 products, which is 2.7 times higher than under UV-Vis light. Moreover, under full-spectrum illumination, BiOx exhibited an increased total product yield, demonstrating the synergistic effect between interband transitions and plasmonic excitations. Quasi-in situ XPS, light-assisted KPFM, and in situ DRIFTS further reveal that the LSPR effect facilitates C-C coupling pathways, promoting the generation of C2 products. This study highlights the potential of dynamic infrared response modulation in plasmonic semiconductors to advance efficient, broadband-driven photocatalytic CO2 reduction.

可调氧空位使动态红外响应在等离子体BiOx上有效地减少CO2。
光催化CO2还原提供了将CO2转化为增值燃料的可持续途径,但仍然受到红外光利用率低的限制。在这里,我们报道了一种具有可调氧空位的非金属等离子体BiOx光催化剂,可以在700到1700 nm之间连续调节红外吸收。通过改变煅烧温度,可以有效地调制载流子浓度和局域表面等离子体共振(LSPR)响应。结合XPS、Mott-Schottky分析和控制实验表明,梯度氧空位在调节等离子体强度和催化活性中起关键作用。优化后的BiOx-180°C催化剂在近红外光照下(>800 nm)实现了高效的CO2还原,总产率为3 μmol g-1 h-1,对C2产物的选择性为50.5%,比紫外-可见光下高2.7倍。此外,在全光谱照明下,BiOx表现出更高的总产物收率,这表明了带间跃迁和等离子体激发之间的协同效应。准原位XPS、光辅助KPFM和原位DRIFTS进一步揭示了LSPR效应促进了C-C偶联途径,促进了C2产物的生成。这项研究强调了等离子体半导体中动态红外响应调制的潜力,以推进高效、宽带驱动的光催化CO2还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信