KnowVolution of an Efficient Polyamidase through Molecular Dynamics Simulations of Incrementally Docked Oligomeric Substrates

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-12 DOI:10.1002/cssc.202500257
Hendrik Puetz, Alexander-Maurice Illig, Mariia Vorobii, Christoph Janknecht, Francisca Contreras, Fabian Flemig, Ulrich Schwaneberg
{"title":"KnowVolution of an Efficient Polyamidase through Molecular Dynamics Simulations of Incrementally Docked Oligomeric Substrates","authors":"Hendrik Puetz,&nbsp;Alexander-Maurice Illig,&nbsp;Mariia Vorobii,&nbsp;Christoph Janknecht,&nbsp;Francisca Contreras,&nbsp;Fabian Flemig,&nbsp;Ulrich Schwaneberg","doi":"10.1002/cssc.202500257","DOIUrl":null,"url":null,"abstract":"<p>Management of synthetic polymer waste is one of the most pressing challenges for society today. Enzymatic recycling of polycondensates like polyamides (PA), however, remains limited due to a lack of efficient polyamidases. This study reports the directed evolution of the polyamidase NylC<sub>p2</sub>–TS. Key positions involved in enzyme–substrate interactions and PA 6 hydrolysis are identified through random mutagenesis and molecular dynamics (MD) simulations. The final variant, NylC–HP (NylC<sub>p2</sub>–TS<sup>F134W/D304M/R330A</sup>), exhibits a 6.9-fold increased specific activity (520 ± 1 μmol<sub>6–AHAeq</sub> h<sup>−1</sup> mg<sub>enzyme</sub><sup>−1</sup>) and enhanced thermal stability (<i>T</i><sub>m</sub> = 90 °C, Δ<i>T</i><sub>m</sub> = 4.2 °C), making NylC–HP the fastest polyamidase for PA 6 and PA 6,6 hydrolysis. Despite the improved reaction rate, the degree of depolymerization remains below 1%. To understand the molecular basis of achieved improvements and factors limiting the degree of depolymerization, intra- and intermolecular interactions of various enzyme-substrate complexes are analyzed by incremental docking of PA 6 tetramers and MD simulations. After optimizing the activity and stability of NylC–HP, the findings suggest that widening the substrate binding pocket is likely necessary to improve substrate accessibility to target more buried attack sites on the polymer surface and thereby enhance the degree of depolymerization.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 15","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cssc.202500257","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202500257","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Management of synthetic polymer waste is one of the most pressing challenges for society today. Enzymatic recycling of polycondensates like polyamides (PA), however, remains limited due to a lack of efficient polyamidases. This study reports the directed evolution of the polyamidase NylCp2–TS. Key positions involved in enzyme–substrate interactions and PA 6 hydrolysis are identified through random mutagenesis and molecular dynamics (MD) simulations. The final variant, NylC–HP (NylCp2–TSF134W/D304M/R330A), exhibits a 6.9-fold increased specific activity (520 ± 1 μmol6–AHAeq h−1 mgenzyme−1) and enhanced thermal stability (Tm = 90 °C, ΔTm = 4.2 °C), making NylC–HP the fastest polyamidase for PA 6 and PA 6,6 hydrolysis. Despite the improved reaction rate, the degree of depolymerization remains below 1%. To understand the molecular basis of achieved improvements and factors limiting the degree of depolymerization, intra- and intermolecular interactions of various enzyme-substrate complexes are analyzed by incremental docking of PA 6 tetramers and MD simulations. After optimizing the activity and stability of NylC–HP, the findings suggest that widening the substrate binding pocket is likely necessary to improve substrate accessibility to target more buried attack sites on the polymer surface and thereby enhance the degree of depolymerization.

Abstract Image

通过增量对接低聚底物的分子动力学模拟了解高效聚酰胺酶。
合成聚合物废物的管理是当今社会最紧迫的挑战之一。然而,由于缺乏高效的聚酰胺酶,聚酰胺(PA)等缩聚物的酶回收仍然有限。本研究报道了聚酰胺酶NylCp2-TS的定向进化。通过随机诱变和分子动力学(MD)模拟,确定了酶-底物相互作用和pa6水解的关键位置。最终的变体NylC-HP (NylCp2-TSF134W/D304M/R330A)的比活性提高了6.9倍(520±19µmol6-AHAeq)。h-1酶-1)和增强的热稳定性(Tm = 90°C,∆Tm = 4.2°C),使NylC-HP成为水解pa6和pa6,6最快的聚酰胺酶。尽管提高了反应速率,但解聚度仍低于1%。为了了解取得进展的分子基础和限制解聚程度的因素,通过pa6四聚体的增量对接和MD模拟,分析了各种酶-底物复合物的分子内和分子间相互作用。在优化了NylC-HP的活性和稳定性后,研究结果表明,扩大底物结合袋可能是提高底物可达性以靶向聚合物表面更多埋藏攻击位点的必要条件,从而提高解聚程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信