Zixuan Huang, Yunpei Si, Yi Zhang, Zicheng Huang, Xuehao Xiu, Yunshan Wang, YuDong Wang, Chunhai Fan, Ping Song
{"title":"A nanoscale quality control framework for assessing FFPE DNA integrity in cancer research.","authors":"Zixuan Huang, Yunpei Si, Yi Zhang, Zicheng Huang, Xuehao Xiu, Yunshan Wang, YuDong Wang, Chunhai Fan, Ping Song","doi":"10.1039/d5nh00176e","DOIUrl":null,"url":null,"abstract":"<p><p>Formalin-fixed paraffin-embedded (FFPE) samples are widely used in cancer research and clinical diagnostics for preserving tissue morphology and enabling long-term storage. However, FFPE-induced DNA degradation, crosslinking, and inconsistent quality control significantly hinder their utility in molecular analyses. In this study, we established a robust nanoscale quality control (QC) framework incorporating gel electrophoresis and quantitative polymerase chain reaction (qPCR) to evaluate DNA integrity in clinical tissue FFPE samples. Our findings demonstrate a quantifiable inverse correlation between the degree of DNA fragmentation and amplification efficiency in FFPE samples. Further analysis of 26 single nucleotide polymorphism loci using targeted next-generation sequencing demonstrated substantial improvements in DNA integrity after enzymatic repair. A comparative whole-exome sequencing analysis of endometrial carcinoma samples with different archival durations demonstrated significantly increased damage levels across multiple genomic features in long-term stored specimens, highlighting the cumulative impact of archival duration. These findings emphasize the detrimental effects of prolonged storage on FFPE DNA quality. Our QC framework enables effective sample stratification, facilitating the selection of high-integrity specimens for sequencing and guiding heavily degraded samples toward targeted short-amplicon assays. This strategy provides a standardized approach to assess the integrity of FFPE-derived DNA, supporting accurate and reproducible use of archival biospecimens in clinical genomics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00176e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Formalin-fixed paraffin-embedded (FFPE) samples are widely used in cancer research and clinical diagnostics for preserving tissue morphology and enabling long-term storage. However, FFPE-induced DNA degradation, crosslinking, and inconsistent quality control significantly hinder their utility in molecular analyses. In this study, we established a robust nanoscale quality control (QC) framework incorporating gel electrophoresis and quantitative polymerase chain reaction (qPCR) to evaluate DNA integrity in clinical tissue FFPE samples. Our findings demonstrate a quantifiable inverse correlation between the degree of DNA fragmentation and amplification efficiency in FFPE samples. Further analysis of 26 single nucleotide polymorphism loci using targeted next-generation sequencing demonstrated substantial improvements in DNA integrity after enzymatic repair. A comparative whole-exome sequencing analysis of endometrial carcinoma samples with different archival durations demonstrated significantly increased damage levels across multiple genomic features in long-term stored specimens, highlighting the cumulative impact of archival duration. These findings emphasize the detrimental effects of prolonged storage on FFPE DNA quality. Our QC framework enables effective sample stratification, facilitating the selection of high-integrity specimens for sequencing and guiding heavily degraded samples toward targeted short-amplicon assays. This strategy provides a standardized approach to assess the integrity of FFPE-derived DNA, supporting accurate and reproducible use of archival biospecimens in clinical genomics.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.