Shuang-Shuang Long, Xi-Feng Zou, Wen-Xi Zhang, Ke Zeng, Qing-Long Qiao, Xu-Dong Jiang, Ying-Wu Lin
{"title":"Lysosome-Targeted Naphthalimide-Based Fluorescence for the Detection of Fe(III) and Monitoring of Iron Metabolism.","authors":"Shuang-Shuang Long, Xi-Feng Zou, Wen-Xi Zhang, Ke Zeng, Qing-Long Qiao, Xu-Dong Jiang, Ying-Wu Lin","doi":"10.1021/acs.bioconjchem.5c00092","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is crucial for numerous biological processes, and lysosomes play an essential role in iron metabolism by regulating Fe<sup>3+</sup> levels. Disruptions of this regulation can lead to Fe<sup>3+</sup> accumulation, resulting in membrane damage and ferroptosis. Here, we have developed a water-soluble fluorescent probe <b>BiNIT</b> that specifically targets lysosomes for the selective detection of Fe<sup>3+</sup>. <b>BiNIT</b> features a bis-naphthalimide structure linked by a thiophene moiety and incorporates two quaternary ammonium groups, which enhance its ability to target lysosomes and its solubility in aqueous environments. The probe showed high selectivity for Fe<sup>3+</sup>, with fluorescence quenching resulting from the paramagnetism of Fe<sup>3+</sup> and its capacity to induce probe aggregation. This aggregation occurs through coordination bonds between Fe<sup>3+</sup> and the carbonyl oxygen, imide nitrogen, or thiophene sulfur in multiple probe molecules. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the formation of nanoparticles upon Fe<sup>3+</sup> binding. Moreover, <b>BiNIT</b> remains stable in environments with pH values above 4, facilitating precise monitoring of Fe<sup>3+</sup> levels within lysosomes. This innovative tool provides valuable insights into iron homeostasis, oxidative stress, and ferroptosis, aiding research on iron-related diseases and the development of therapeutic strategies.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1430-1437"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Iron is crucial for numerous biological processes, and lysosomes play an essential role in iron metabolism by regulating Fe3+ levels. Disruptions of this regulation can lead to Fe3+ accumulation, resulting in membrane damage and ferroptosis. Here, we have developed a water-soluble fluorescent probe BiNIT that specifically targets lysosomes for the selective detection of Fe3+. BiNIT features a bis-naphthalimide structure linked by a thiophene moiety and incorporates two quaternary ammonium groups, which enhance its ability to target lysosomes and its solubility in aqueous environments. The probe showed high selectivity for Fe3+, with fluorescence quenching resulting from the paramagnetism of Fe3+ and its capacity to induce probe aggregation. This aggregation occurs through coordination bonds between Fe3+ and the carbonyl oxygen, imide nitrogen, or thiophene sulfur in multiple probe molecules. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the formation of nanoparticles upon Fe3+ binding. Moreover, BiNIT remains stable in environments with pH values above 4, facilitating precise monitoring of Fe3+ levels within lysosomes. This innovative tool provides valuable insights into iron homeostasis, oxidative stress, and ferroptosis, aiding research on iron-related diseases and the development of therapeutic strategies.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.