Lysosome-Targeted Naphthalimide-Based Fluorescence for the Detection of Fe(III) and Monitoring of Iron Metabolism.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Bioconjugate Chemistry Pub Date : 2025-07-16 Epub Date: 2025-06-11 DOI:10.1021/acs.bioconjchem.5c00092
Shuang-Shuang Long, Xi-Feng Zou, Wen-Xi Zhang, Ke Zeng, Qing-Long Qiao, Xu-Dong Jiang, Ying-Wu Lin
{"title":"Lysosome-Targeted Naphthalimide-Based Fluorescence for the Detection of Fe(III) and Monitoring of Iron Metabolism.","authors":"Shuang-Shuang Long, Xi-Feng Zou, Wen-Xi Zhang, Ke Zeng, Qing-Long Qiao, Xu-Dong Jiang, Ying-Wu Lin","doi":"10.1021/acs.bioconjchem.5c00092","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is crucial for numerous biological processes, and lysosomes play an essential role in iron metabolism by regulating Fe<sup>3+</sup> levels. Disruptions of this regulation can lead to Fe<sup>3+</sup> accumulation, resulting in membrane damage and ferroptosis. Here, we have developed a water-soluble fluorescent probe <b>BiNIT</b> that specifically targets lysosomes for the selective detection of Fe<sup>3+</sup>. <b>BiNIT</b> features a bis-naphthalimide structure linked by a thiophene moiety and incorporates two quaternary ammonium groups, which enhance its ability to target lysosomes and its solubility in aqueous environments. The probe showed high selectivity for Fe<sup>3+</sup>, with fluorescence quenching resulting from the paramagnetism of Fe<sup>3+</sup> and its capacity to induce probe aggregation. This aggregation occurs through coordination bonds between Fe<sup>3+</sup> and the carbonyl oxygen, imide nitrogen, or thiophene sulfur in multiple probe molecules. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the formation of nanoparticles upon Fe<sup>3+</sup> binding. Moreover, <b>BiNIT</b> remains stable in environments with pH values above 4, facilitating precise monitoring of Fe<sup>3+</sup> levels within lysosomes. This innovative tool provides valuable insights into iron homeostasis, oxidative stress, and ferroptosis, aiding research on iron-related diseases and the development of therapeutic strategies.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1430-1437"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Iron is crucial for numerous biological processes, and lysosomes play an essential role in iron metabolism by regulating Fe3+ levels. Disruptions of this regulation can lead to Fe3+ accumulation, resulting in membrane damage and ferroptosis. Here, we have developed a water-soluble fluorescent probe BiNIT that specifically targets lysosomes for the selective detection of Fe3+. BiNIT features a bis-naphthalimide structure linked by a thiophene moiety and incorporates two quaternary ammonium groups, which enhance its ability to target lysosomes and its solubility in aqueous environments. The probe showed high selectivity for Fe3+, with fluorescence quenching resulting from the paramagnetism of Fe3+ and its capacity to induce probe aggregation. This aggregation occurs through coordination bonds between Fe3+ and the carbonyl oxygen, imide nitrogen, or thiophene sulfur in multiple probe molecules. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the formation of nanoparticles upon Fe3+ binding. Moreover, BiNIT remains stable in environments with pH values above 4, facilitating precise monitoring of Fe3+ levels within lysosomes. This innovative tool provides valuable insights into iron homeostasis, oxidative stress, and ferroptosis, aiding research on iron-related diseases and the development of therapeutic strategies.

溶酶体靶向萘酰亚胺荧光检测铁(III)及铁代谢监测。
铁对许多生物过程至关重要,溶酶体通过调节Fe3+水平在铁代谢中发挥重要作用。这种调节的破坏可导致Fe3+积累,导致膜损伤和铁下垂。在这里,我们开发了一种水溶性荧光探针BiNIT,专门针对溶酶体选择性检测Fe3+。BiNIT具有由噻吩部分连接的双萘酰亚胺结构,并包含两个季铵基团,这增强了其靶向溶酶体的能力和在水环境中的溶解度。探针对Fe3+表现出高选择性,Fe3+的顺磁性及其诱导探针聚集的能力导致荧光猝灭。这种聚集是通过Fe3+与多个探针分子中的羰基氧、亚胺氮或噻吩硫之间的配位键发生的。动态光散射(DLS)和透射电子显微镜(TEM)证实了Fe3+结合后形成的纳米颗粒。此外,BiNIT在pH值高于4的环境中保持稳定,有助于精确监测溶酶体内的Fe3+水平。这个创新的工具为铁稳态、氧化应激和铁中毒提供了有价值的见解,有助于铁相关疾病的研究和治疗策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信