Macarena Siri, Adrien Sarlet, Ricardo Ziege, Laura Zorzetto, Carolina Sotelo Guzman, Shahrouz Amini, Regine Hengge, Kerstin G Blank, Cécile M Bidan
{"title":"Mechanical Comparison of <i>Escherichia coli</i> Biofilms with Altered Matrix Composition: A Study Combining Shear-Rheology and Microindentation.","authors":"Macarena Siri, Adrien Sarlet, Ricardo Ziege, Laura Zorzetto, Carolina Sotelo Guzman, Shahrouz Amini, Regine Hengge, Kerstin G Blank, Cécile M Bidan","doi":"10.1021/acsbiomaterials.5c00261","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical properties of bacterial biofilms depend on the composition and microstructure of their extracellular matrix (ECM), which constitutes a network of extracellular proteins and polysaccharide fibers. In particular, <i>Escherichia coli</i> macrocolony biofilms were suggested to present tissue-like elasticity due to a dense fiber network consisting of amyloid curli and phosphoethanolamine-modified cellulose (pEtN-cellulose). To understand the contribution of these two main ECM components to the emergent mechanical properties of <i>E. coli</i> biofilms, we performed shear-rheology and microindentation experiments on biofilms grown from <i>E. coli</i> strains that produce different ECM. We measured that biofilms containing curli fibers are stiffer in compression than curli-deficient biofilms. We further quantitatively demonstrate the crucial contribution of pEtN-cellulose, and especially of the pEtN modification, to the stiffness and structural stability of biofilms when associated with curli fibers. To compare the differences observed between the two methods, we also investigated how the structure and mechanical properties of biofilms with different ECM compositions are affected by the sample preparation method used for shear-rheology. We found that biofilm homogenization, used prior to shear-rheology, destroys the macroscale structure of the biofilm while the microscopic ECM architecture may remain intact. The resulting changes in biofilm mechanical properties highlight the respective advantages and limitations of the two complementary mechanical characterization techniques in the context of biofilm research. As such, our work does not only describe the role of the ECM on the mechanical properties of <i>E. coli</i> biofilms. It also informs the biofilm community on considering sample preparation when interpreting mechanical data of biofilm-based materials.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00261","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties of bacterial biofilms depend on the composition and microstructure of their extracellular matrix (ECM), which constitutes a network of extracellular proteins and polysaccharide fibers. In particular, Escherichia coli macrocolony biofilms were suggested to present tissue-like elasticity due to a dense fiber network consisting of amyloid curli and phosphoethanolamine-modified cellulose (pEtN-cellulose). To understand the contribution of these two main ECM components to the emergent mechanical properties of E. coli biofilms, we performed shear-rheology and microindentation experiments on biofilms grown from E. coli strains that produce different ECM. We measured that biofilms containing curli fibers are stiffer in compression than curli-deficient biofilms. We further quantitatively demonstrate the crucial contribution of pEtN-cellulose, and especially of the pEtN modification, to the stiffness and structural stability of biofilms when associated with curli fibers. To compare the differences observed between the two methods, we also investigated how the structure and mechanical properties of biofilms with different ECM compositions are affected by the sample preparation method used for shear-rheology. We found that biofilm homogenization, used prior to shear-rheology, destroys the macroscale structure of the biofilm while the microscopic ECM architecture may remain intact. The resulting changes in biofilm mechanical properties highlight the respective advantages and limitations of the two complementary mechanical characterization techniques in the context of biofilm research. As such, our work does not only describe the role of the ECM on the mechanical properties of E. coli biofilms. It also informs the biofilm community on considering sample preparation when interpreting mechanical data of biofilm-based materials.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture