Enhanced Early Detection of Colorectal Cancer via Blood Biomarker Combinations Identified Through Extracellular Vesicle Isolation and Artificial Intelligence Analysis

IF 14.5 1区 医学 Q1 CELL BIOLOGY
Bonhan Koo, Young Il Kim, Minju Lee, Seok-Byung Lim, Yong Shin
{"title":"Enhanced Early Detection of Colorectal Cancer via Blood Biomarker Combinations Identified Through Extracellular Vesicle Isolation and Artificial Intelligence Analysis","authors":"Bonhan Koo,&nbsp;Young Il Kim,&nbsp;Minju Lee,&nbsp;Seok-Byung Lim,&nbsp;Yong Shin","doi":"10.1002/jev2.70088","DOIUrl":null,"url":null,"abstract":"<p>Colorectal cancer (CRC) remains a major cause of cancer-related deaths worldwide, with early detection being crucial for improving survival rates. Despite the potential of extracellular vesicles (EVs) as blood biomarkers for CRC diagnosis, their clinical utility is limited due to complex and time-consuming isolation methods, unverified biomarkers and low diagnostic performance. Here, we introduce the ZAHV-AI system, which combines the zeolite-amine and homobifunctional hydrazide-based extracellular vesicle isolation (ZAHVIS) platform with AI-driven analysis for enhanced CRC diagnosis. The ZAHVIS platform enables simple, rapid and cost-effective EV isolation and one-step extraction of EV-derived proteins and nucleic acids (NAs), providing a streamlined approach. Using blood plasma samples from 80 CRC patients across all stages and 20 healthy individuals, we identified four EV-derived miRNA blood biomarkers (miR-23a-3p, miR-92a-3p, miR-125a-3p and miR-150-5p) by confirming statistical significance with relative quantification (RQ) values from real-time PCR and integrated these with carcinoembryonic antigen (CEA) levels into an AI-driven diagnostic model. Among 31 combinations used to identify optimal sets, optimal combination (miR-23a-3p, miR-92a-3p, miR-150-5p and CEA) for overall CRC achieved an area under the curve (AUC) of 0.9861, outperforming individual markers and conventional CEA tests. Notably, the system achieved perfect performance in detecting stages 0–1 (AUC: 1.0) and demonstrated high accuracy for stage 2 (AUC: 0.9722) and early-stage CRC (AUC: 0.9861), using stage-specific optimal combinations. Therefore, the ZAHV-AI system offers a reliable and clinically relevant tool for CRC diagnostics, significantly enhancing early detection and monitoring capabilities.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 6","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70088","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) remains a major cause of cancer-related deaths worldwide, with early detection being crucial for improving survival rates. Despite the potential of extracellular vesicles (EVs) as blood biomarkers for CRC diagnosis, their clinical utility is limited due to complex and time-consuming isolation methods, unverified biomarkers and low diagnostic performance. Here, we introduce the ZAHV-AI system, which combines the zeolite-amine and homobifunctional hydrazide-based extracellular vesicle isolation (ZAHVIS) platform with AI-driven analysis for enhanced CRC diagnosis. The ZAHVIS platform enables simple, rapid and cost-effective EV isolation and one-step extraction of EV-derived proteins and nucleic acids (NAs), providing a streamlined approach. Using blood plasma samples from 80 CRC patients across all stages and 20 healthy individuals, we identified four EV-derived miRNA blood biomarkers (miR-23a-3p, miR-92a-3p, miR-125a-3p and miR-150-5p) by confirming statistical significance with relative quantification (RQ) values from real-time PCR and integrated these with carcinoembryonic antigen (CEA) levels into an AI-driven diagnostic model. Among 31 combinations used to identify optimal sets, optimal combination (miR-23a-3p, miR-92a-3p, miR-150-5p and CEA) for overall CRC achieved an area under the curve (AUC) of 0.9861, outperforming individual markers and conventional CEA tests. Notably, the system achieved perfect performance in detecting stages 0–1 (AUC: 1.0) and demonstrated high accuracy for stage 2 (AUC: 0.9722) and early-stage CRC (AUC: 0.9861), using stage-specific optimal combinations. Therefore, the ZAHV-AI system offers a reliable and clinically relevant tool for CRC diagnostics, significantly enhancing early detection and monitoring capabilities.

Abstract Image

通过细胞外囊泡分离和人工智能分析鉴定的血液生物标志物组合增强结直肠癌的早期检测
结直肠癌(CRC)仍然是全球癌症相关死亡的主要原因,早期发现对于提高生存率至关重要。尽管细胞外囊泡(EVs)作为CRC诊断的血液生物标志物具有潜力,但由于分离方法复杂且耗时,生物标志物未经验证且诊断性能低,其临床应用受到限制。在这里,我们介绍了ZAHV-AI系统,该系统将基于沸石胺和同源双功能肼的细胞外囊泡分离(ZAHVIS)平台与ai驱动的分析相结合,以增强CRC诊断。ZAHVIS平台能够实现简单、快速和经济高效的EV分离,并一步提取EV衍生的蛋白质和核酸(NAs),提供了一种简化的方法。研究人员使用来自80名不同阶段的结直肠癌患者和20名健康个体的血浆样本,通过实时PCR的相对定量(RQ)值确认统计学显著性,确定了四种ev衍生的miRNA血液生物标志物(miR-23a-3p、miR-92a-3p、miR-125a-3p和miR-150-5p),并将这些标志物与癌胚抗原(CEA)水平整合到人工智能驱动的诊断模型中。在31个用于鉴定最优集合的组合中,最优组合(miR-23a-3p、miR-92a-3p、miR-150-5p和CEA)对整体CRC的曲线下面积(AUC)为0.9861,优于单个标记物和常规CEA测试。值得注意的是,该系统在检测0-1阶段(AUC: 1.0)方面取得了完美的表现,并且使用针对阶段的最优组合,在检测2阶段(AUC: 0.9722)和早期CRC (AUC: 0.9861)方面表现出了很高的准确性。因此,ZAHV-AI系统为CRC诊断提供了可靠的临床相关工具,显著提高了早期发现和监测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信