Quasi-Resonant Tunneling Transport in Magnetic CrBr3

IF 2.8
Gen Long, Peiheng Jiang, Zishu Zhou, Meizhen Huang, Binglan Wu, Zhicheng Zhong, Sunan Ding, Ning Wang, Guangyu Zhang
{"title":"Quasi-Resonant Tunneling Transport in Magnetic CrBr3","authors":"Gen Long,&nbsp;Peiheng Jiang,&nbsp;Zishu Zhou,&nbsp;Meizhen Huang,&nbsp;Binglan Wu,&nbsp;Zhicheng Zhong,&nbsp;Sunan Ding,&nbsp;Ning Wang,&nbsp;Guangyu Zhang","doi":"10.1002/apxr.202400177","DOIUrl":null,"url":null,"abstract":"<p>Tunneling techniques are pivotal for probing 2D magnetic materials. While the Fowler-Nordheim model describes tunneling in bulk materials through bias-induced triangular potentials, van der Waals layered systems require special consideration of interlayer gaps. The fundamental mechanisms of tunneling processes in van der Waals magnetic materials are delved into, with a specific emphasis on CrBr<sub>3</sub>. Layer-resolved quasi-resonant tunneling (QRT) mediated by ladder-shaped barriers is revealed. QRT occurs because the outermost CrBr3 conduction band aligns with the Fermi level of the tunneling electrode under the bias voltage tilting, resulting in an increased tunneling probability and enhanced current. Two competing mechanisms driven by the magnetic field—the suppression of spin fluctuations leading to negative tunneling magnetoresistance (TMR) and the spin-flip-induced elevation of the conduction band energy causing positive TMR—are identified to explain the diverse behaviors of tunneling magnetoresistance under different bias voltages and temperatures. The work establishes van der Waals heterostructures as distinct tunneling systems differing fundamentally from conventional bulk barriers, while introducing the QRT concept as a critical advancement in understanding electronic tunneling in layered materials.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tunneling techniques are pivotal for probing 2D magnetic materials. While the Fowler-Nordheim model describes tunneling in bulk materials through bias-induced triangular potentials, van der Waals layered systems require special consideration of interlayer gaps. The fundamental mechanisms of tunneling processes in van der Waals magnetic materials are delved into, with a specific emphasis on CrBr3. Layer-resolved quasi-resonant tunneling (QRT) mediated by ladder-shaped barriers is revealed. QRT occurs because the outermost CrBr3 conduction band aligns with the Fermi level of the tunneling electrode under the bias voltage tilting, resulting in an increased tunneling probability and enhanced current. Two competing mechanisms driven by the magnetic field—the suppression of spin fluctuations leading to negative tunneling magnetoresistance (TMR) and the spin-flip-induced elevation of the conduction band energy causing positive TMR—are identified to explain the diverse behaviors of tunneling magnetoresistance under different bias voltages and temperatures. The work establishes van der Waals heterostructures as distinct tunneling systems differing fundamentally from conventional bulk barriers, while introducing the QRT concept as a critical advancement in understanding electronic tunneling in layered materials.

Abstract Image

磁性CrBr3的准共振隧道输运
隧道技术是探测二维磁性材料的关键技术。虽然Fowler-Nordheim模型描述了通过偏压诱导的三角势在块状材料中隧穿,但范德华分层系统需要特别考虑层间间隙。研究了范德华磁性材料中隧穿过程的基本机制,特别强调了CrBr3。揭示了梯状势垒介导的层分辨准共振隧穿现象。由于在偏置电压倾斜下,最外层的CrBr3导带与隧穿电极的费米能级一致,导致隧穿概率增加,电流增强,从而发生QRT。在磁场驱动下,自旋涨落抑制导致负隧穿磁阻(TMR)和自旋翻转诱导导带能量升高导致正隧穿磁阻(TMR),从而解释了不同偏置电压和温度下隧穿磁阻的不同行为。这项工作建立了范德华异质结构作为与传统体势垒根本不同的独特隧道系统,同时引入了QRT概念,作为理解层状材料中电子隧道的关键进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信