Arithmetic constants for symplectic variances of the divisor function

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-06-13 DOI:10.1112/mtk.70029
Vivian Kuperberg, Matilde Lalín
{"title":"Arithmetic constants for symplectic variances of the divisor function","authors":"Vivian Kuperberg,&nbsp;Matilde Lalín","doi":"10.1112/mtk.70029","DOIUrl":null,"url":null,"abstract":"<p>Kuperberg and Lalín stated some conjectures on the variance of certain sums of the divisor function <span></span><math></math> over number fields, which were inspired by analogous results over function fields proven by the authors. These problems are related to certain symplectic matrix integrals. While the function field results can be directly related to the random matrix integrals, the connection between the random matrix integrals and the number field results is less direct and involves arithmetic factors. The goal of this article is to give heuristic arguments for the formulas of these arithmetic factors.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70029","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Kuperberg and Lalín stated some conjectures on the variance of certain sums of the divisor function over number fields, which were inspired by analogous results over function fields proven by the authors. These problems are related to certain symplectic matrix integrals. While the function field results can be directly related to the random matrix integrals, the connection between the random matrix integrals and the number field results is less direct and involves arithmetic factors. The goal of this article is to give heuristic arguments for the formulas of these arithmetic factors.

除数函数辛方差的算术常数
Kuperberg和Lalín对数域上除数函数的某些和的方差作了一些猜想,这些猜想是受到作者在函数域上证明的类似结果的启发。这些问题与某些辛矩阵积分有关。函数域结果与随机矩阵积分可以直接相关,而随机矩阵积分与数域结果之间的联系不太直接,涉及到算术因素。本文的目的是对这些算术因子的公式给出启发式论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信