Impurity Band Formation as a Route to Thermoelectric Power Factor Enhancement in n-type XNiSn Half-Heuslers

IF 2.8
Robert J. Quinn, Yuji Go, Aaron B. Naden, Andras Bojtor, Gabor Paráda, Ashiq K. M. A. Shawon, Kamil Domosud, Keith Refson, Alexandra Zevalkink, Neophytos Neophytou, Jan-Willem G. Bos
{"title":"Impurity Band Formation as a Route to Thermoelectric Power Factor Enhancement in n-type XNiSn Half-Heuslers","authors":"Robert J. Quinn,&nbsp;Yuji Go,&nbsp;Aaron B. Naden,&nbsp;Andras Bojtor,&nbsp;Gabor Paráda,&nbsp;Ashiq K. M. A. Shawon,&nbsp;Kamil Domosud,&nbsp;Keith Refson,&nbsp;Alexandra Zevalkink,&nbsp;Neophytos Neophytou,&nbsp;Jan-Willem G. Bos","doi":"10.1002/apxr.202400179","DOIUrl":null,"url":null,"abstract":"<p>Bandstructure engineering is a key route for thermoelectric performance enhancement. Here, 20–50% Seebeck (<i>S</i>) enhancement is reported for XNiCu<sub>y</sub>Sn half-Heusler samples based on <i>X</i> = Ti. This novel electronic effect is attributed to the emergence of impurity bands of finite extent, due to the Cu dopants. Depending on the dispersion, extent, and offset with respect to the parent material, these bands are shown to enhance <i>S</i> to different degrees. Experimentally, this effect is controllable by the Ti content of the samples, with the addition of Zr/Hf gradually removing the enhancement. At the same time, the mobility remains largely intact, enabling power factors ≥3 mW m<sup>−1</sup> K<sup>−2</sup> near room temperature, increasing to ≥5 mW m<sup>−1</sup> K<sup>−2</sup> at high temperature. Combined with reduced thermal conductivity due to the Cu interstitials, this enables high average <i>zT</i> = 0.67–0.72 between 320 and 793 K for XNiCu<sub>y</sub>Sn compositions with ≥70% Ti. This work reveals the existence of a new route for electronic performance enhancement in n-type XNiSn materials that are normally limited by their single carrier pocket. In principle, impurity bands can be applied to other materials and provide a new direction for further development.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400179","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202400179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bandstructure engineering is a key route for thermoelectric performance enhancement. Here, 20–50% Seebeck (S) enhancement is reported for XNiCuySn half-Heusler samples based on X = Ti. This novel electronic effect is attributed to the emergence of impurity bands of finite extent, due to the Cu dopants. Depending on the dispersion, extent, and offset with respect to the parent material, these bands are shown to enhance S to different degrees. Experimentally, this effect is controllable by the Ti content of the samples, with the addition of Zr/Hf gradually removing the enhancement. At the same time, the mobility remains largely intact, enabling power factors ≥3 mW m−1 K−2 near room temperature, increasing to ≥5 mW m−1 K−2 at high temperature. Combined with reduced thermal conductivity due to the Cu interstitials, this enables high average zT = 0.67–0.72 between 320 and 793 K for XNiCuySn compositions with ≥70% Ti. This work reveals the existence of a new route for electronic performance enhancement in n-type XNiSn materials that are normally limited by their single carrier pocket. In principle, impurity bands can be applied to other materials and provide a new direction for further development.

Abstract Image

Abstract Image

Abstract Image

杂质带形成是n型XNiSn半heuslers中热电功率因数增强的途径
带结构工程是提高热电性能的关键途径。在这里,基于X = Ti的XNiCuySn半heusler样品报告了20-50%的塞贝克(S)增强。这种新颖的电子效应归因于Cu掺杂剂在有限范围内出现的杂质带。根据色散、程度和相对于母体材料的偏移,这些波段显示出不同程度的S增强。实验结果表明,该效应受样品中Ti含量的控制,随着Zr/Hf的加入,增强效应逐渐消失。同时,迁移率基本保持不变,使得室温下的功率因数≥3 mW m−1 K−2,高温下的功率因数增加到≥5 mW m−1 K−2。再加上Cu空隙导致的导热系数降低,这使得含Ti≥70%的XNiCuySn成分在320 ~ 793 K之间的平均zT = 0.67 ~ 0.72。这项工作揭示了n型XNiSn材料中电子性能增强的新途径的存在,这些材料通常受其单载流子口袋的限制。原则上,杂质带可以应用于其他材料,为进一步发展提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信