Characteristic Velocity and Timescales of Nonphase-Locked Internal Tides in a Mesoscale Eddy Field

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Matthew D. Rayson, Lachlan Astfalck, Aurelien L. S. Ponte, Andrew P. Zulberti, Nicole L. Jones
{"title":"Characteristic Velocity and Timescales of Nonphase-Locked Internal Tides in a Mesoscale Eddy Field","authors":"Matthew D. Rayson,&nbsp;Lachlan Astfalck,&nbsp;Aurelien L. S. Ponte,&nbsp;Andrew P. Zulberti,&nbsp;Nicole L. Jones","doi":"10.1029/2024JC021789","DOIUrl":null,"url":null,"abstract":"<p>We present a new parametric auto-covariance kernel function for characterizing properties of the mesoscale eddy field and the nonphase-locked internal tide from ocean time series records. We demonstrate that the model captures the important spectral properties, namely the spectral roll-off of the mesoscale continuum and the broad spectral “cusps” centered around the tidal forcing frequencies. The spectral cusp model has three main parameters that characterize the nonphase-locked internal tide: the amplitude, a decorrelation timescale, and a shape parameter that captures the rate at which the cusp rolls away. Estimation of the third shape parameter is novel. We argue that an integral timescale is the most suitable characteristic timescale and show how it relates to the parametric decorrelation timescale. A key innovation of this work is that we estimate the parameters in the frequency domain using the debiased Whittle likelihood. We apply our spectral parameter estimation technique to outputs from idealized and realistic numerical experiments of internal tides propagating through a mesoscale eddy field. We demonstrate that the nonphase-locked internal tide integral timescale was 2–7 d, and is influenced by the Rossby number of the mesoscale flow field, which is linked to the eddy timescale, and is relatively constant in space. Furthermore, we demonstrate that the internal tide integral timescale is set by the global properties of the eddy field because internal waves have memory of past interactions. The intended use of our parametric kernel functions are for generating probabilistic predictions of ocean time series.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021789","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021789","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new parametric auto-covariance kernel function for characterizing properties of the mesoscale eddy field and the nonphase-locked internal tide from ocean time series records. We demonstrate that the model captures the important spectral properties, namely the spectral roll-off of the mesoscale continuum and the broad spectral “cusps” centered around the tidal forcing frequencies. The spectral cusp model has three main parameters that characterize the nonphase-locked internal tide: the amplitude, a decorrelation timescale, and a shape parameter that captures the rate at which the cusp rolls away. Estimation of the third shape parameter is novel. We argue that an integral timescale is the most suitable characteristic timescale and show how it relates to the parametric decorrelation timescale. A key innovation of this work is that we estimate the parameters in the frequency domain using the debiased Whittle likelihood. We apply our spectral parameter estimation technique to outputs from idealized and realistic numerical experiments of internal tides propagating through a mesoscale eddy field. We demonstrate that the nonphase-locked internal tide integral timescale was 2–7 d, and is influenced by the Rossby number of the mesoscale flow field, which is linked to the eddy timescale, and is relatively constant in space. Furthermore, we demonstrate that the internal tide integral timescale is set by the global properties of the eddy field because internal waves have memory of past interactions. The intended use of our parametric kernel functions are for generating probabilistic predictions of ocean time series.

Abstract Image

中尺度涡旋场中非锁相内部潮汐的特征速度和时间尺度
本文提出了一种新的参数化自协方差核函数,用于表征海洋时间序列记录的中尺度涡旋场和非锁相内潮的特性。我们证明,该模式捕获了重要的光谱特性,即中尺度连续体的光谱滚降和以潮汐强迫频率为中心的广谱“尖峰”。谱尖点模型有三个主要参数来表征非锁相内部潮汐:振幅、去相关时间标度和捕获尖点滚动速度的形状参数。第三种形状参数的估计是新颖的。我们认为积分时间标是最合适的特征时间标,并展示了它与参数去相关时间标的关系。这项工作的一个关键创新是我们使用去偏惠特尔似然在频域估计参数。我们将谱参数估计技术应用于中尺度涡旋场内部潮汐传播的理想和现实数值实验的输出。结果表明,非锁相内潮积分时间尺度为2 ~ 7 d,受与涡动时间尺度相关的中尺度流场Rossby数影响,且在空间上相对恒定。此外,由于内波对过去的相互作用具有记忆性,我们证明了内潮积分时间标度是由涡场的整体特性决定的。我们的参数核函数的预期用途是生成海洋时间序列的概率预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信